1. bookVolumen 5 (2015): Edición 4 (October 2015)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Performance Comparison of Hybrid Electromagnetism-Like Mechanism Algorithms with Descent Method

Publicado en línea: 29 Oct 2015
Volumen & Edición: Volumen 5 (2015) - Edición 4 (October 2015)
Páginas: 271 - 282
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] I. Boussaid, J. Lepagnot, P. Siarry: A Survey on Optimization Metaheuristics, Information & Sciences, 237, pp.82-117, (2013)Search in Google Scholar

[2] J. Matyas: Random Optimization, Automation & Remote Contr., 26, pp.246-253 (1965)Search in Google Scholar

[3] J. Kennedy, R. Eberhart: Particle Swarm Optimization, IEEE Inf. Conf. on Neural Netwarks, 4, 1942-1948, (1995)Search in Google Scholar

[4] N. Baba: A new Approach for Finding the Global Minimum of Error Function of Neural Networks, Neural Networks, 2, pp. 367-373, (1989)Search in Google Scholar

[5] S. I. Birbil, S. C. Fang: An Electromagnetismlike Mechanism for Global Optimization, Journal of Global Optimization, 25, pp.263-282, (2003)Search in Google Scholar

[6] J. Jiang, H. Shang, K. Liu, Q. Su, L. Zhang: A Clustering Method Using Electromagnetism-like Mechanism Algorithm, Journal of Computational Information Systems, 9, 10, pp.3985-3191, (2013)Search in Google Scholar

[7] M. Clerc, J. Kennedy: The Particle Swarm- Explosion, Stability, and Convergence in a Multidimensional Complex Space, IEEE Trans. on Evolutionary Computation, 6, 1, (2002)Search in Google Scholar

[8] N. Baba: A Hybrid Algorithm for Finding the Global Minimum of Error Function of Neural Networks and its applications, Neural Networks, 7, 8, pp.1253-1265, (1994)Search in Google Scholar

[9] H. Yuan, J. Ahi, J. Liu: Application of Particle Swarm Optimization Algorithms based Fuzzy BP Neural Network for Target Damage Accesment, Scientific Research and Essays, 6, 15, pp.3109-3121, (2011)Search in Google Scholar

[10] J. L. Lin, C.H. Wa, H.Y. Chung: Performance Comparison of Electromagnetism-like Algorithms for Global Optimization, Applied Mathematics, 3, pp.1265-1275, (2012)Search in Google Scholar

[11] C.H.Lee, C.T.Li, F.Y.Chang: A Species-based improved Electromagnetism-like Mechanism Algorithm for TSK-type integral-valued Neural Fuzzy System Optimization, Fuzzy Set and Systems, 171, pp. 22-43, (2011)Search in Google Scholar

[12] M. M. Gupta, L. Jin, N. Honma: Static and Dynamic Neural Networks, IEEE Pres, Wiley- Interscience, (2003)10.1002/0471427950Search in Google Scholar

[13] T. M. Martinetz, S. G. Berkovich, K. J. Schulten: Neural Gas Network for Vector Quantization and its Application to Time-series Prediction, IEEE Trans. Neural Network, 4, 4, pp.558-569, (1993)Search in Google Scholar

[14] UCI Repository of Machine Learning Databases and Domain Theories, ftp://ftp.ics.uci.edu/pub/machinelearning-DatabasesSearch in Google Scholar

[15] C.H. Lee, F.Y. Chang, C.T. Lee: A hybrid of electromagnetism-like mechanism and backpropagation algorithms for recurrent neural fuzzy systems design, Journal of Systems Science, 43, 2, pp. 231-247, (2012)Search in Google Scholar

[16] H.H Chang, T.Y. Huang: Mixture Experiment Design Using Artificial Neural Networks and Electromagnetism-like Mechanism Algorithm, in Proc. Second International Conference on Innovative Computing, Information and Control, pp. 397-397, (2007)Search in Google Scholar

[17] X.J. Wang, L. Gao, C.Y. Zhang: Electromagnetism-Like Mechanism Based Algorithm for Neural Network Training, LNAI, 5227, pp. 40-45, (2008)Search in Google Scholar

[18] C.H. Lee, F.K. Chang, Y.C. Lee: Nonlinear systems design by a novel fuzzy neural system via hybridization of electromagnetism-like mechanism and particle swarm optimization algorithms, Information Sciences, 186, 1, pp. 59-72, (2012)Search in Google Scholar

[19] S. Fukumoto, H. Miyajima: Learning Algorithms with Regularization Criteria for Fuzzy Reasoning Model, Journal of Innovative Computing Information and Control, 1,1, pp. 249-163, (2006)Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo