1. bookVolumen 5 (2015): Edición 3 (July 2015)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

An Artificial Potential Field Based Mobile Robot Navigation Method To Prevent From Deadlock

Publicado en línea: 23 Sep 2015
Volumen & Edición: Volumen 5 (2015) - Edición 3 (July 2015)
Páginas: 189 - 203
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] Hwang, Y. K.; Ahuja, N., “Gross motion planning: a survey,” ACM Computing Surveys (CSUR) vol. 24, no.3, 1992, pp.219-291.10.1145/136035.136037Search in Google Scholar

[2] Sridharan, K.; Priya T. K., “A parallel algorithm for constructing reduced visibility graph and its FPGA implementation.” Journal of Systems Architecture, vol. 50, no.10, 2004, pp.635-644.10.1016/j.sysarc.2004.02.003Search in Google Scholar

[3] Bhattacharya, P.; Gavrilova, M. L., “Roadmap-based path planning-Using the Voronoi diagram for a clearance-based shortest path,” Robotics & Automation Magazine, IEEE, vol.15, no.2, 2008, pp.58-66.10.1109/MRA.2008.921540Search in Google Scholar

[4] Garrido, S.; Moreno, L.; Abderrahim, M.; Martin, F., “Path planning for mobile robot navigation using Voronoi diagram and fast marching,” Int. J. Robot. Autom. vol. 2, no.1, 2011, pp.42-64.Search in Google Scholar

[5] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Proceedings of IEEE International conference on Robotics and Automation, vol. 2, Stanford, CA, March 1985, pp.500-505.Search in Google Scholar

[6] Lai, L. C.; Wu, C. J.; Shiue, Y. L., “A potential field method for robot motion planning in unknown environments,” Journal of the Chinese institute of engineers, vol.30, no.3, 2007, pp.369-377.10.1080/02533839.2007.9671265Search in Google Scholar

[7] J., Koren; Y. Borenstein, “Real-Time obstacle avoidance for fast mobile robot,” IEEE Transaction on Systems, Man, and Cybernetics, vol. 19, no. 5, Sep/Oct 1989, pp.1179-1187.10.1109/21.44033Search in Google Scholar

[8] Y., Borenstein; J. Koren, “Potential field methods and their inherent limitations for mobile robot navigation,” in Proceedings of the IEEE International Conference on Robotics and Automation, vol.2, 1991, pp.1398-1404.Search in Google Scholar

[9] S. S. Ge; Y. J. Cui, “New Potential Functions for Mobile Robot Path Planning,” IEEE Transaction on Robotics and Automation, vol. 16, no. 5, Oct. 2000, pp.615-620.10.1109/70.880813Search in Google Scholar

[10] Borenstein, J.; Koren, Y., “Real-time obstacle avoidance for fast mobile robots,” Systems, Man and Cybernetics, IEEE Transactions on, vol.19, no.5, Sept.-Oct. 1989, pp.1179-1187.10.1109/21.44033Search in Google Scholar

[11] Yim, W. J.; Park, J. B. “Analysis of mobile robot navigation using vector field histogram according to the number of sectors, the robot speed and the width of the path,” Control, Automation and Systems (ICCAS), 2014 14th International Conference on, vol., no., 22-25 Oct. 2014, pp.1037-1040.10.1109/ICCAS.2014.6987943Search in Google Scholar

[12] Chaomin Luo; Yang, S.X.; Krishnan, M.; Paulik, M., “Autonomous vehicle navigation and mapping with local minima avoidance paradigm in unknown environments,” World Automation Congress (WAC), 2014, pp.823-82810.1109/WAC.2014.6936163Search in Google Scholar

[13] Jiea, D.; Xueming, M.; Kaixiang, P., “IVFH*: Real-time dynamic obstacle avoidance for mobile robots,” Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on, vol., no., 7-10 Dec. 2010, pp.844-847.10.1109/ICARCV.2010.5707283Search in Google Scholar

[14] Bo You; Jiangyan Qiu; Dongjie Li, “A novel obstacle avoidance method for low-cost household mobile robot,” Automation and Logistics, 2008. ICAL 2008. IEEE International Conference on, vol., no., 1-3 Sept. 2008, pp.111-116.10.1109/ICAL.2008.4636130Search in Google Scholar

[15] Yata, T.; Kleeman, L.; Yuta, S. I., “Wall following using angle information measured by a single ultrasonic transducer,” Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, vol.2, no., 16-20 May 1998, pp.1590-1596.Search in Google Scholar

[16] Hanafi, D.; Abueejela, Y. M.; Zakaria, M. F., “Wall Follower Autonomous Robot Development Applying Fuzzy Incremental Controller,” Intelligent Control and Automation, vol. 4, no.1, 2013, pp.18-2510.4236/ica.2013.41003Search in Google Scholar

[17] Ding, C. J.; Duan, P.; Zhang, M. L.; Han, Y. H., “Wall Following of Mobile Robot Based on Fuzzy Genetic Algorithm of Linear Interpolating,” Fuzzy Information and Engineering, vol. 2., Springer Berlin Heidelberg, 2009, pp.1579-1589.10.1007/978-3-642-03664-4_167Search in Google Scholar

[18] Gavrilut, I.; Tiponut, V.; Gacsadi, A.; Tepelea, L., “Wall-following method for an autonomous mobile robot using two IR sensors,” WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering. Eds. N. E. Mastorakis, et al. No. 12. WSEAS, 2008.Search in Google Scholar

[19] R. Glasis; A. Komoda; S.A.M. Gielen, “Neural network dynamics for path planning and obstalce avoidance,” Neural Networks, vol. 8, no. 1, 1995, pp. 125-133.10.1016/0893-6080(94)E0045-MSearch in Google Scholar

[20] C. C. Chang; K. T. Song, “Environment prediction for a mobile robot in a dynamic environment,” IEEE Transaction on Robotics and Automation, vol. 13, no. 6, 1997, pp.862-872.10.1109/70.650165Search in Google Scholar

[21] G. Oriolo, “Real-time map building and navigation for autonomous robots in unknown environment,” IEEE Transaction on Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 28, no. 3, 1998, pp. 316-333.10.1109/3477.67862618255950Search in Google Scholar

[22] N. H. C. Yung; C. Ye, “Avoidance of moving obstacles through behavior fusion and motion prediction,” IEEE Int. Conf. on Systems, Man, and Cybernetics, San Diego, CA, USA, 1998, pp. 3424-3429.Search in Google Scholar

[23] Mohanty, P. K.; Parhi, D. R., “Controlling the motion of an autonomous mobile robot using various techniques: a review,” Journal of Advance Mechanical Engineering, vol.1, no.1, 2013, pp.24-39.10.7726/jame.2013.1003Search in Google Scholar

[24] Lee, Gim Hee; Marcelo H. Ang Jr. “Mobile Robots Navigation, Mapping, and Localization Part I,” 2009, pp.1072-1079.10.4018/978-1-59904-849-9.ch158Search in Google Scholar

[25] Hacene, N.; Mendil, B., “Autonomous Navigation and Obstacle Avoidance for a Wheeled Mobile Robots: A Hybrid Approach,” International Journal of Computer Applications vol. 81, no.7, 2013, pp.34-37.10.5120/14027-2285Search in Google Scholar

[26] Atyabi, A.; Powers, D. M., “Review of classical and heuristic-based navigation and path planning approaches,” International Journal of Advancements in Computing Technology, vol. 5, no.14, 2013.Search in Google Scholar

[27] Buniyamin, N.; Wan N. W. A. J.; Sariff, N.; Mohamad, Z., “A simple local path planning algorithm for autonomous mobile robots,” International journal of systems applications, Engineering & development, vol. 5, no. 2, 2011, pp.151-159.Search in Google Scholar

[28] Masehian, E.; Sedighizadeh, D., “Classic and heuristic approaches in robot motion planning-a chronological review,” World Academy of Science, Engineering and Technology, vol. 23, 2007, pp.101-106.Search in Google Scholar

[29] Li, G.; Tamura, Y.; Yamashita, A.; Asama, H., “Effective improved artificial potential field-based regression search method for autonomous mobile robot path planning,” International Journal of Mechatronics and Automation, vol. 3, no.3, 2013, pp.141-170.10.1504/IJMA.2013.055612Search in Google Scholar

[30] L. Tang; S. Dian; G. Gu; K. Zhou; S. Wang; X. Feng, “A Novel potential field method for obstacle avoidance and path planning of mobile robot,” 3rd IEEE Int. Conf. on Computer Science and Technology (ICCSIT), vol. 9, no. 1, 2010, pp. 633-637.10.1109/ICCSIT.2010.5565069Search in Google Scholar

[31] Chen, L., “UUV path planning algorithm based on virtual obstacle,” Mechatronics and Automation (ICMA), 2014 IEEE International Conference on. IEEE, 2014.10.1109/ICMA.2014.6885960Search in Google Scholar

[32] Lu, W.; Zhang, G.; Ferrari, S., “An Information Potential Approach to Integrated Sensor Path Planning and Control,” Robotics, IEEE Transactions on, vol.30, no.4, Aug. 2014, pp.919-93410.1109/TRO.2014.2312812Search in Google Scholar

[33] Doria, N. S. F.; Freire, E. O.; Basilio, J. C., “An algorithm inspired by the deterministic annealing approach to avoid local minima in artificial potential fields,” Advanced Robotics (ICAR), 2013 16th International Conference on, vol., no., 25-29 Nov. 2013, pp.1-6.10.1109/ICAR.2013.6766480Search in Google Scholar

[34] Guanghui Li; Yamashita, A.; Asama, H.; Tamura, Y., “An efficient improved artificial potential field based regression search method for robot path planning,” Mechatronics and Automation (ICMA), 2012 International Conference on, vol., no., 5-8 Aug. 2012, pp.1227-1232.Search in Google Scholar

[35] Ya-Chun, C.; Yamamoto, Y., “Online deadlock avoidance scheme of wheeled mobile robot under the presence of boxlike obstacles,” Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on, vol., no., 24-28 July 2005, pp.1535-1540.Search in Google Scholar

[36] Li, C.; Cui, G.; Lu, H., “The design of an obstacle avoiding trajectory in unknown environment using potential fields,” Information and Automation (ICIA), 2010 IEEE International Conference on, vol., no., 20-23 June 2010, pp.2050-2054.10.1109/ICINFA.2010.5512513Search in Google Scholar

[37] Rezaee, H.; Abdollahi, F., “Adaptive artificial potential field approach for obstacle avoidance of unmanned aircrafts,” Advanced Intelligent Mechatronics (AIM), 2012 IEEE/ASME International Conference on, vol., no., 11-14 July 2012, pp.1-6.10.1109/AIM.2012.6305268Search in Google Scholar

[38] Lee, J.; Nam, Y.; Hong, S., “Random force based algorithm for local minima escape of potential field method,” Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on. IEEE, vol., no., 7-10 Dec. 2010, pp.827-832.10.1109/ICARCV.2010.5707422Search in Google Scholar

[39] Sugiyama, S.; Yamada, J.; Yoshikawa, T., “Path planning of a mobile robot for avoiding moving obstacles with improved velocity control by using the hydrodynamic potential,” Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, vol., no., 18-22 Oct. 2010, pp.1421-1426.10.1109/IROS.2010.5649323Search in Google Scholar

[40] Song, Q.; & Liu, L., “Mobile robot path planning based on dynamic fuzzy artificial potential field method,” International Journal of Hybrid Information Technology vol.5, no.4, 2012, pp.85-94.Search in Google Scholar

[41] Vadakkepat, P.; Tan, K. C.; Ming-Liang, W., “Evolutionary artificial potential fields and their application in real time robot path planning,” Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 1. IEEE, 2000.Search in Google Scholar

[42] Melingui, A.; Chettibi, T.; Merzouki, R.; Mbede, J.B., “Adaptive navigation of an omni-drive autonomous mobile robot in unstructured dynamic environments,” Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on, vol., no., 12-14 Dec. 2013, pp.1924-1929.10.1109/ROBIO.2013.6739750Search in Google Scholar

[43] Ji-Wung Choi, “A potential field and bug compound navigation algorithm for nonholonomic wheeled robots,” Innovative Engineering Systems (ICIES), 2012 First International Conference on, vol., no., 7-9 Dec. 2012, pp.166-171.10.1109/ICIES.2012.6530864Search in Google Scholar

[44] Mohamed, E.F.; El-Metwally, K.; Hanafy, A.R., “An improved Tangent Bug method integrated with artificial potential field for multi-robot path planning,” Innovations in Intelligent Systems and Applications (INISTA), 2011 International Symposium on, vol., no., 15-18 June 2011, pp.555-559.10.1109/INISTA.2011.5946136Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo