Acceso abierto

Effects of Concrete Block Pavement on Flow Retardation Factor


Cite

Abbott, C.L., Comino-Mateos, L., 2003. In-situ hydraulic performance of a permeable pavement sustainable urban drainage system. Water Environ. J. 17, 187–190.10.1111/j.1747-6593.2003.tb00460.xSearch in Google Scholar

Ahiablame, L.M., Engel, B.A., Chaubey, I., 2012. Effectiveness of low impact development practices: literature review and suggestions for future research. Water. Air. Soil Pollut. 223, 4253–4273. http://link.springer.com/article/10.1007/s11270-012-1189-2.10.1007/s11270-012-1189-2Search in Google Scholar

Alsubih, M., Arthur, S., Wright, G., Allen, D., 2016. Experimental study on the hydrological performance of a permeable pavement. Urban Water J. 1–8, http://dx.doi.org/10.1080/1573062X.2016.1176221.10.1080/1573062X.2016.1176221Search in Google Scholar

Aungst, P.E., 2015. Coupling Stormflow Attenuation with Gully and Trail Stabilization, Wissahickon Valley Park, Philadelphia. Low Impact Dev. Technol. 208. http://ascelibrary.org/doi/pdfplus/10.1061/9780784413883#page=219.Search in Google Scholar

Ball, J.E., Rankin, K., 2010. The hydrological performance of a permeable pavement. Urban Water J. 7, 79–90. http://www.tandfonline.com/doi/abs/10.1080/15730620902969773.10.1080/15730620902969773Search in Google Scholar

Bean, E.Z., Hunt, W.F., Bidelspach, D.A., 2007. Field survey of permeable pavement surface infiltration rates. J. Irrig. Drain. Eng. 133, 249–255. http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9437(2007)133:3(249).10.1061/(ASCE)0733-9437(2007)133:3(249)Search in Google Scholar

Belmeziti, A., Cherqui, F., Tourne, A., Granger, D., Werey, C., Le Gauffre, P., Chocat, B., 2015. Transitioning to sustainable urban water management systems: how to define expected service functions? Civ. Eng. Environ. Syst. 32, 316–334. http://www.tandfonline.com/doi/abs/10.1080/10286608.2015.1047355.10.1080/10286608.2015.1047355Search in Google Scholar

Bentarzi, Y., Ghenaim, A., Terfous, A., Wanko, A., Feugeas, F., Poulet, J.-B., Mosé, R., 2016. Hydrodynamic behaviour of a new permeable pavement material under high rainfall conditions. Urban Water J. 13, 687–696. http://iahr.tandfonline.com/doi/abs/10.1080/1573062X.2015.1024688.10.1080/1573062X.2015.1024688Search in Google Scholar

Borgwardt, S., 2006. Long-term in-situ infiltration performance of permeable concrete block pavement, in: Proceedings of the 8th International Conference on Concrete Block Paving, San Francisco, CA, USA.Search in Google Scholar

Castro-Fresno, D., Rodriguez-Hernandez, J., Rodriguez-Hernandez, J., Ballester-Munoz, F., 2005. Sustainable Urban Drainage Systems (SUDS). Interciencia 30, 255.Search in Google Scholar

Charlesworth, S.M., Harker, E., Rickard, S., 2003. A review of sustainable drainage systems (SuDS): A soft option for hard drainage questions? Geography 99–107. http://www.jstor.org/stable/40573828.Search in Google Scholar

Collins, K.A., Hunt, W.F., Hathaway, J.M., 2008. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina. J. Hydrol. Eng. 13, 1146–1157. http://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0699(2008)13:12(1146).10.1061/(ASCE)1084-0699(2008)13:12(1146)Search in Google Scholar

Dierkes, C., Lucke, T., 2015. Development and approval of an innovative permeable pavement with high design demands, in: Proceedings of the 36th International Association for Hydro-Environment Engineering and Research World Congress. International Association for Hydro-Environment Engineering and Research, pp. 1–8.Search in Google Scholar

Drake, J.A., Bradford, A., Marsalek, J., 2013. Review of environmental performance of permeable pavement systems: state of the knowledge. Water Qual. Res. J. Can. 48, 203–222.10.2166/wqrjc.2013.055Search in Google Scholar

Fletcher, T.D., Deletic, A., Mitchell, V.G., Hatt, B.E., 2008. Reuse of urban runoff in Australia: a review of recent advances and remaining challenges. J. Environ. Qual. 37, S–116.10.2134/jeq2007.041118765758Search in Google Scholar

Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.-L., others, 2015. SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J. 12, 525–542. http://iahr.tandfonline.com/doi/abs/10.1080/1573062X.2014.916314.10.1080/1573062X.2014.916314Search in Google Scholar

González-Angullo, N., Castro, D., Rodríguez-Hernández, J., Davies, J.W., 2008. Runoff infiltration to permeable paving in clogged conditions. Urban Water J. 5, 117–124. http://www.tandfonline.com/doi/abs/10.1080/15730620701723538.10.1080/15730620701723538Search in Google Scholar

Guillette, A., Studio, L.I.D., 2010. Achieving Sustainable Site Design through Low Impact Development Practices. Whole Build. Des. Guide Www Wbdg Org.Search in Google Scholar

Guillette, A., Studio, L.I.D., 2005. Low impact development technologies. National Institute of Building Sciences.Search in Google Scholar

Hopperus-Buma, P.B., 2015. Tough, water-permeable paver. Google Patents.Search in Google Scholar

Jia, H., Lu, Y., Shaw, L.Y., Chen, Y., 2012. Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Sep. Purif. Technol. 84, 112–119. http://www.sciencedirect.com/science/article/pii/S138358661100250410.1016/j.seppur.2011.04.026Search in Google Scholar

Jia, H., Yao, H., Shaw, L.Y., 2013. Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 7, 709–720. http://link.springer.com/article/10.1007/s11783-013-0557-5.10.1007/s11783-013-0557-5Search in Google Scholar

Kirby, A., 2005. SuDS-innovation or a tried and tested practice?, in: Proceedings of the Institution of Civil Engineers-Municipal Engineer. London: Published for the Institution of Civil Engineers by Thomas Telford Services, c1992-, pp. 115–122.10.1680/muen.2005.158.2.115Search in Google Scholar

Lin, W., Cho, Y., Kim, I.T., 2016. Development of Deflection Prediction Model for Concrete Block Pavement Considering the Block Shapes and Construction Patterns. Adv. Mater. Sci. Eng. 2016. https://www.hindawi.com/journals/amse/2016/5126436/abs/.10.1155/2016/5126436Search in Google Scholar

Lucke, T., 2014. Using drainage slots in permeable paving blocks to delay the effects of clogging: Proof of concept study. Water 6, 2660–2670. http://www.mdpi.com/2073-4441/6/9/2660/htm.10.3390/w6092660Search in Google Scholar

Lucke, T., Beecham, S., 2011. An investigation into long term infiltration rates for permeable pavements on sloping sub-catchments, in: 12th International Conference on Urban Drainage, Brazil.Search in Google Scholar

Pagliara, S., Das, R., Carnacina, I., 2008. Flow resistance in large-scale roughness condition. Can. J. Civ. Eng. 35, 1285–1293. http://www.nrcresearchpress.com/doi/abs/10.1139/l08-06810.1139/L08-068Search in Google Scholar

Park, D.-G., Sandoval, N., Lin, W., Kim, H., Cho, Y.-H., 2014. A case study: Evaluation of water storage capacity in permeable block pavement. KSCE J. Civ. Eng. 18, 514–520. http://link.springer.com/article/10.1007/s12205-014-0036-y.10.1007/s12205-014-0036-ySearch in Google Scholar

Pollack, R., 2014. Interlocking construction systems and methods. Google Patents.Search in Google Scholar

Schlichting, H., Gersten, K., 2017. Fundamentals of Boundary–Layer Theory, in: Boundary-Layer Theory. Springer, pp. 29–49. http://link.springer.com/chapter/10.1007/978-3-662-52919-5_2.10.1007/978-3-662-52919-5_2Search in Google Scholar

Scholz, M., Grabowiecki, P., 2007. Review of permeable pavement systems. Build. Environ. 42, 3830–3836. http://www.sciencedirect.com/science/article/pii/S0360132306004227.10.1016/j.buildenv.2006.11.016Search in Google Scholar

WB Nichols, P., Lucke, T., Dierkes, C., 2014. Comparing two methods of determining infiltration rates of permeable interlocking concrete pavers. Water 6, 2353–2366. http://www.mdpi.com/2073-4441/6/8/2353/htm.10.3390/w6082353Search in Google Scholar

Wolff, A., 2013. Simulation of pavement surface runoff using the depth-averaged shallow water equations. http://elib.uni-stuttgart.de/handle/11682/505.Search in Google Scholar

Yong, C.F., McCarthy, D.T., Deletic, A., 2013. Predicting physical clogging of porous and permeable pavements. J. Hydrol. 481, 48–55. http://www.sciencedirect.com/science/article/pii/S0022169412010694.10.1016/j.jhydrol.2012.12.009Search in Google Scholar

Yu, C.C., Chang, J.W., Hao, S.W., 2013. A Numerical Method for the Paving Block Evaluation, in: Applied Mechanics and Materials. Trans Tech Publ, pp. 524–528. http://www.scientific.net/AMM.395-396.524.10.4028/www.scientific.net/AMM.395-396.524Search in Google Scholar

Zhang, S., Liu, Y., Li, M., Liang, B., 2016. Distributed hydrological models for addressing effects of spatial variability of roughness on overland flow. Water Sci. Eng. 9, 249–255. http://www.sciencedirect.com/science/article/pii/S1674237016300205.10.1016/j.wse.2016.07.001Search in Google Scholar

Zhou, Q., 2014. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water 6, 976–992. http://www.mdpi.com/2073-4441/6/4/976/htm.10.3390/w6040976Search in Google Scholar

eISSN:
2284-7197
ISSN:
2247-3769
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy