Cite

Agarmaa, M. 2015. The above-ground biomass and the effect of drainage on trees radial growth increment in Scots pine (Pinus sylvestris) stands growing in Myrtillus drained swamp site type. (Mustika-kõdusoo kasvukohatüübi männikute (Pinus sylvestris L.) maapealne biomass ja kuivenduse mõju puude jämeduskasvule). MSc Thesis, Estonian University of Life Sciences. 29 pp. (In Estonian).Search in Google Scholar

Aosaar, J., Uri, V. 2008. Biomass production of grey alder, hybrid alder and silver birch stands on abandoned agricultural land. – Forestry Studies / Metsanduslikud Uurimused, 48, 53–66.Search in Google Scholar

Aosaar, J., Varik, M., Lõhmus, K., Ostonen, I., Becker, H., Uri, V. 2013. Long-term study of above- and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land. – European Journal of Forest Research, 132, 737–749.10.1007/s10342-013-0706-1Search in Google Scholar

Arumäe, T., Lang, M. 2016. A validation of coarse scale global vegetation height map for biomass estimation in hemiboreal forests in Estonia. – Baltic Forestry, 22(2). (In press).Search in Google Scholar

Asner, G.P. Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., van Breugel, M. 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. – Oecologia, 168, 1147–1160.Search in Google Scholar

Bartelink., H.H. 1997. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). – Annales des sciences forestières, INRA/EDP Sciences, 54, 39–50.Search in Google Scholar

Bitterlich, W. 1948. The introduction of angle count sampling into forestry. (Die Winkelzaehlprobe). – Allgemeine Forst- und Holzwirtschaftliche Zeitung, 59(1–2), 4–5. (In German).Search in Google Scholar

Bormann, F.H., Likens, G.E. 1992. Pattern and process in a forested ecosystem: Disturbance, development, and the steady state based on the Hubbard Brook ecosystem study. New York, Springer-Verlag.Search in Google Scholar

Brienen, R.J.W., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., et al. 2015. Long-term decline of the Amazon carbon sink. – Nature, 519, 344–348.Search in Google Scholar

Bronisz, K., Zasada, M. 2016. Simplified empirical formulas to determine the dry biomass of aboveground components of trees for Scots pine. (Uproszczone wzory empiryczne do określania suchej biomasy nadziemnej części drzew i ich komponentów dla sosny zwyczajnej). – Sylwan, 160(4), 277−283. (In Polish).Search in Google Scholar

Cannell, M.G.R. 1982. World forest biomass and primary production data. London, Academic Press. 391 pp. [WWW document]. – URL ftp://daac.ornl.gov/data/global_vegetation/biomass_allocation/comp/ [Accessed 8 July 2016].Search in Google Scholar

Cannell, M.G.R. 1984. Woody biomass of forest stands. – Forest Ecology and Management, 8, 299–313.Search in Google Scholar

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. – Oecologia, 145, 87–99.Search in Google Scholar

Chave, J., Coomes, D.A., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E. 2009. Towards a worldwide wood economics spectrum. – Ecology Letters, 12(4), 351–366.Search in Google Scholar

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G. 2015. Improved allometric models to estimate the aboveground biomass of tropical trees. – Global Change Biology, 20, 3177–3190.Search in Google Scholar

Clark, D.A. 2004. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. – Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 477–491.Search in Google Scholar

Contreras, M.A., Affleck, D., Chung, W. 2011. Evaluating tree competition indices as predictors of basal area increment in western Montana forests. – Forest Ecology and Management, 262, 1939–1949.Search in Google Scholar

DeBell, D.S., Whitesell, C.D., Schubert, T.H. 1985. Mixed plantations of Eucalyptus and leguminous trees enhance biomass production. – Res. Paper PSW-RP-175. Berkeley, CA: Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture. 6 pp.10.2737/PSW-RP-175Search in Google Scholar

Enquist, B.J., Niklas, K.J. 2002. Global allocation rules for patterns of biomass partitioning across seed plants. – Science, 295, 1517–1520.Search in Google Scholar

Finèr, L., Mannerkoski, H., Piirainen, S., Starr, M. 2003. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. – Forest Ecology and Management, 174, 51–63.Search in Google Scholar

Forrester, D.I, Bauhus, J., Khanna, P.K. 2004. Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. – Forest Ecology and Management, 193, 81–95.Search in Google Scholar

Frey, T. 2009. Stand structure links up canopy processes and forest management. – Forestry Studies / Metsanduslikud Uurimused, 51, 40–48.Search in Google Scholar

Goodman, R.C., Phillips, O.L., Torres, D.C., Freitas, L., Cortese, S.T., Monteagudo, A., Baker, T.R. 2013. Amazon palm biomass and allometry. – Forest Ecology and Management, 310, 994–1004.Search in Google Scholar

Harrison, R.B., Terry, T.A., Licata, C.W., Flaming, B.L, Meade, R., Guerrini, I.A., Strahm, B.D., Xue, D., Lolley, M.R., Sidell, A.R., Wagoner, G.L., Briggs, D., Turnblom, E.C. 2009. Biomass and stand characteristics of a highly productive mixed Douglasfir and western hemlock plantation in coastal Washington. – Western Journal of Applied Forestry, 24, 180–186.Search in Google Scholar

Hasenauer, H. 1994. A individual tree growth simulator for uneven-aged spruce – pine and beech – spruce mixed forest stands. (Ein Einzelbaumwachstumssimulator für ungleichaltrige Fichten-Kiefern- und Buchen-Fichtenmischbestände). – Forstliche Schriftenreihe der Universität für Bodenkultur. Wien, Österreichische Gesellschaft für Waldökosystemforschung und Experimentelle Baumforschung. Band 8, 152 p. (In German).Search in Google Scholar

Hasenauer, H. 1997. Dimensional relationships of open-grown trees in Austria. – Forest Ecology and Management, 96, 197–206.Search in Google Scholar

Hayashi, R., Kershaw, J., Weiskittel, A. 2015. Evaluation of alternative methods for using LiDAR to predict aboveground biomass in mixed species and structurally complex forests in northeastern North America. – Mathematical and Computational Forestry & Natural-Resource Sciences, 7, 49–65.Search in Google Scholar

Hegyi, F. 1974. A simulation model for managing jackpine stands. – Fries, J. (ed.). Proceedings of IUFRO meeting S4.01.04 on Growth models for tree and stand simulation. Stockholm, Royal College of Forestry.Search in Google Scholar

Helmisaari, H.S., Makkonen, K., Kellomäki S., Valtonen, E., Mälkönen, E. 2002. Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. – Forest Ecology and Management, 165, 317–326.Search in Google Scholar

Henry, M., Bombelli, A., Trotta, C., Alessandrini, A., Birigazzi, L., Sola, G., Vieilledent, G., Santenoise, P., Longuetaud, F., Valentini, R., Picard, N., Saint-André, L. 2013. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. – iForest, 6, 320–330.10.3832/ifor0901-006Search in Google Scholar

Jaakkola, T., Mäkinen, H., Saranpää, P. 2005. Wood density in Norway spruce: changes with thinning intensity and tree age. – Canadian Journal of Forest Research, 35, 1767–1778.Search in Google Scholar

Johansson, T. 1999a. Biomass equations for determining fractions of European aspen growing on abandoned farmland and some practical implications. – Biomass and Bioenergy, 17, 471–480.Search in Google Scholar

Johansson, T. 1999b. Biomass production of Norway spruce (Picea abies (L.) Karst.) growing on abandoned farmland. – Silva Fennica, 33, 261–280.Search in Google Scholar

Johansson, T. 2007. Biomass production and allometric above- and below-ground relations for young birch stands planted at four spacings on abandoned farmland. – Forestry, 80, 41–52.10.1093/forestry/cpl049Search in Google Scholar

Johansson, T. 2013. Biomass production of hybrid aspen growing on former farm land in Sweden. – Journal of Forestry Research, 24, 237−246.Search in Google Scholar

Johnston, D.C. 1977. Estimating lodgepole pine biomass. – Theses, Dissertations, Professional Papers. Paper 2237.Search in Google Scholar

Jung, S.Y., Ju, N.G., Lee, K.S., Yoo, B.O., Park, Y.B., Yoo, S.B., Park, P.J. 2015. Thinning intensity and growth response in a Quercus acuta stand. – Journal of Korean Forest Society, 104, 536–542.Search in Google Scholar

Kadak, M. 2015. Above-ground biomass production in downy birch stands in drained peatland. (Jänesekapsa-kõdusoo kasvukohatüübi sookaasikute maapealne bioproduktsioon). MSc Thesis, Estonian University of Life Sciences. 30 pp. (In Estonian).Search in Google Scholar

Kask, R. 2003. Physical and mechanical properties of Scots pine (Pinus sylvestris L.) on bilberry and cowberry forest site types. (Hariliku männi (Pinus sylvestris L.) puidu mehhaanilised ja füüsikalised omadused pohla ja mustika metsakasvukohatüübis). MSc Thesis, Estonian Agricultural University. (In Estonian).Search in Google Scholar

Kask, R., Pikk, J. 2009. Second thinning Scots pine wood properties in different forest site types in Estonia. – Baltic Forestry, 15, 97–104.Search in Google Scholar

Kilpeläinen, A., Routa, J., Peltola, H., Zubizarreta Gerendiain, A., Pulkkinen, P., Kellomäki, S. 2010. Effects of genetic entry and competition on above ground biomass production of Norway spruce grown in southern Finland. – Forest Ecology and Management, 259, 2327–2332.Search in Google Scholar

Kittenberger, A. 2003. Generation of the tree distribution patterns. (Generierung von Baumverteilungsmustern). Diploma thesis. Universität für Bodenkultur. Wien, Austria. 79 pp. (In German).Search in Google Scholar

Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2014. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsanduslikud Uurimused, 62, 26–38.Search in Google Scholar

Klopf, M., Thurnher, C., Hasenauer, H., 2011. Moses Framework user guide. (Benutzerhandbuch MosesFramework). Universität für Bodenkultur. Wien, Austria. 124 pp. (In German).Search in Google Scholar

Kõlli, R. 2002. Productivity and humus status of forest soils in Estonia. – Forest Ecology and Management, 171, 169–179.Search in Google Scholar

Kõlli, R., Kanal, A. 2010. The management and protection of soil cover: an ecosystem approach. – Forestry Studies / Metsanduslikud Uurimused, 53, 25–34.Search in Google Scholar

Krigul, T. 1972. Forest mensuration. (Metsatakseerimine). Tallinn, Valgus. 348 pp. (In Estonian).Search in Google Scholar

Laarmann, D., Korjus, H., Sims, A., Stanturf, J.A., Kiviste, A., Köster, K. 2009. Analysis of forest naturalness and tree mortality patterns in Estonia. – Forest Ecology and Management, 258, S187–S195.Search in Google Scholar

Lachenbruch, B., Moore, J.R., Evans, R. 2011. Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence. – Meinzer, F.C., Lachenbruch, B., Dawson, T.E. (eds.). Size- and age-related changes in tree structure and function. Tree Physiology 4. Springer, 121–164.Search in Google Scholar

Larson, P. 1963. Stem form development of forest trees. – Forest Science Monograph 5, 41 pp.10.1093/forestscience/9.s2.a0001Search in Google Scholar

Lefsky, M. 2010. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. – Geophysical Research Letters, 37(15), 1–5.Search in Google Scholar

Lewis, S.L., Lopez-Gonzalez, G., Sonke, B. et al. 2009. Increasing carbon storage in intact African tropical forests. – Nature 457, 1003–1006.Search in Google Scholar

Li, X., Son, Y.M., Lee, K.H., Kim, R.H., Yi, M.J., Son, Y. 2012. Notes on the biomass expansion factors of Quercus mongolica and Quercus variabilis forests in Korea. – Journal of Ecology and Field Biology, 35, 243–249.Search in Google Scholar

Lilleleht, A. 2011. Relationships between stand volume growth and composition in mixed stands dominated by Scots Pine (Pinus sylvestris L.). – Forestry Studies / Metsanduslikud Uurimused, 54, 18–27.Search in Google Scholar

Lilleleht, A., Sims, A., Pommerening, A. 2014. Spatial forest structure reconstruction as a strategy for mitigating edge-bias in circular monitoring plots. – Forest Ecology and Management, 316, 47−53.Search in Google Scholar

Lumbres, R.I.C., Lee, Y.J., Choi, H.S., Kim, S.Y., Jang, M.N., Abino, A.C., Seo, Y.O., Kim, C.S., Park, J.H. 2014. Comparative analysis of four stem taper models for Quercus glauca in Mount Halla, Jeju Island, South Korea. – Journal of Mountain Science, 11, 442–448.Search in Google Scholar

Luyssaert, S., Schulze, E.D., Börner, A., Knohl, A., Hessenmöller, D., Law, B.E., Ciais, P., Grace, J. 2008. Old-growth forests as global carbon sinks. – Nature, 455, 213–215.Search in Google Scholar

MacPeak, M., Burkart, L., Weldon, D. 1990. Comparison of grade, yield, and mechanical properties of lumber produced from young fast-grown and older slow-grown planted slash pine. – Forest Products Journal, 40(1), 11–14.Search in Google Scholar

Marklund, L.G. 1988. Biomass functions for pine, spruce and birch in Sweden. Swedish University of Agricultural Sciences. Department of Forest Survey. Report 45, 71 pp.Search in Google Scholar

Mikšys, V., Varnagiryte-Kabasinskiene, I., Stupak, I., Ar molaitis, K., Kukkola, M., Wójcik, J. 2007. Above-ground biomass functions for Scots pine in Lithuania. – Biomass and Bioenergy, 31, 685–692.Search in Google Scholar

Mitt, R., Padari, A., Samsonov, M. 2014. Modelling of woody biomass on electricity pylons. – Forestry Studies / Metsanduslikud Uurimused, 60, 44–56.Search in Google Scholar

Mõistus, M., Lang, M. 2015. Leaf area index mapping with optical methods and allometric models in SMEAR flux tower footprint at Järvselja, Estonia. – Forestry Studies / Metsanduslikud Uurimused, 63, 1–15.Search in Google Scholar

Möll, H. 2015. Biomass production and carbon budget in 40-year-old downy birch (Betula pubescens) stands growing in Oxalis drained swamp sitetype. (Biomassi produktsioon ja süsiniku bilanss 40-aastases sookaasikus (Betula pubescens) jänesekapsa-kõdusoo kasvukohatüübis). MSc Thesis, Estonian University of Life Sciences. 30 pp. (In Estonian).Search in Google Scholar

Moreno, A., Neumann, M., Hasenauer, H. 2016. Optimal resolution for linking remotely sensed and forest inventory data in Europe. – Remote Sensing of Environment, 183, 109–119.Search in Google Scholar

Muller-Landau, H.C. 2009. Carbon cycle: sink in the African jungle. – Nature, 457, 969–970.Search in Google Scholar

Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., Nemani. R.R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. – Nature, 386, 698–702.Search in Google Scholar

Nabuurs, G.J., Masera, O., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, E., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W.A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N.H., Sanz Sanchez, M.J., Zhang, X. 2007. Forestry. – Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Search in Google Scholar

Nebel, G., Dragsted, J., Vega, A.S. 2001. Litter fall, biomass and net primary production in flood plain forests in the Peruvian Amazon. – Forest Ecology and Management, 150, 93–102.Search in Google Scholar

Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., Lang, M., Achten, W.M.J., Thivolle-Cazat, A., Bronisz, K., Merganič, J., Decuyper, M., Alberdi, I., Astrup, R., Mohren, F., Hasenauer, H. 2016. Comparison of carbon estimation methods for European forests. – Forest Ecology and Management, 361, 397–420.Search in Google Scholar

Newman, G.S., Arthur, M.A., Muller, R.N. 2006. Above- and belowground net primary production in a temperate mixed deciduous forest. – Ecosystems, 9, 317–329.Search in Google Scholar

Nilson, A. 2005. Fitness of allometric equation N = aDb and equation N = (a + bD)−2 for modelling the dependence of the number of trees N on their mean diameter D in yield tables. – Forestry Studies / Metsanduslikud Uurimused, 43, 159–172.Search in Google Scholar

Nilson, T., Peterson, U. 1994. Age dependence of forest reflectance – analysis of main driving factors. – Remote Sensing of Environment, 48, 319–331.Search in Google Scholar

Onyekwelu, J.C. 2004. Above-ground biomass production and biomass equations for even-aged Gmelina arborea (ROXB) plantations in southwestern Nigeria. – Biomass and Bioenergy, 26, 39–46.Search in Google Scholar

Onyekwelu, J.C. 2007. Growth, biomass yield and biomass functions for plantation-grown Nauclea diderrichii (de Wild) in the humid tropical rainforest zone of south-western Nigeria. – Bioresource Technology, 98, 2679–2687.10.1016/j.biortech.2006.09.02317097288Search in Google Scholar

Orzeł, S., Ochał, W., Forgiel, M., Socha, J. 2006. Biomass and annual production of oak stands in the Niepołomicka Forest. (Biomasa i roczna produkcja drzewostanów dębowych Puszczy Niepołomickiej). – Sylwan 150(5), 30−43. (In Polish).Search in Google Scholar

Padari, A. 1999. Timber assessment in forest stands. (Kasvava metsa hindamine. Sortimendid ja rikked). − Pidev metsakorraldus, 32, 37−43. (In Estonian).Search in Google Scholar

Park, I.H., Son, Y., Kim, D.Y., Jin, H.O., Yi, M.Y., Kim, R.H., Hwang, J.O. 2005. Biomass and production of a naturally regenerated oak forest in southern Korea. – Ecological Research, 20, 227–231.Search in Google Scholar

Pastorella, F., Paletto, A. 2014. Biomass allocation in natural regeneration of Fagus sylvatica and Picea abies trees in Italian Alps. – Forestry Studies / Metsanduslikud Uurimused, 61, 35–46.Search in Google Scholar

Peichl, M., Arain, A.M. 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. – Agricultural and Forest Meteorology, 140, 51–63.Search in Google Scholar

Qiong, Z., Xing-Yu, L., De-Hui. Z. 2011. Aboveground biomass and nutrient allocation in an agesequence of Larix olgensis plantations. – Journal of Forestry Research, 22, 71−76.Search in Google Scholar

Repola, J. 2008. Biomass equations for birch in Finland. – Silva Fennica, 42, 605–624.Search in Google Scholar

Repola, J. 2009. Biomass equations for Scots pine and Norway spruce in Finland. – Silva Fennica, 43, 625–647.Search in Google Scholar

Rice, A.H., Pyle, E.H., Saleska, S.R., L. Hutyra, L., Palace, M., Keller, M., de Camargo, P.B., Portilho, K., Marques, D.F., Wofsy, S.C. 2004. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. – Ecological Applications, 14, S55–S71.Search in Google Scholar

Rolim, S.G., Machado R.E., Pillar, V.D. 2016. – Divergence in a neo-tropical forest during 33 years of succession following clear-cutting. – Journal of Vegetation Science. (In press).10.1111/jvs.12502Search in Google Scholar

Saarmann, E., Veibri, U. 2006. Wood science. (Puiduteadus). Tartu, Vali Press OÜ. 74 pp. (In Estonian).Search in Google Scholar

Schietti, J., Martins, D., Emilio, T., Souza, P.F., Levis, C., Baccaro, F.B., da Veiga Pinto, J.L.P., Moulatlet, G.M., Stark, S.C., Sarmento, K., de Araújo, R.N.O., Costa, F.R.C., Schöngart, J., Quesada, C.A., Saleska, S.R., Tomasella, J., Magnusson, W.E. 2016. Forest structure along a 600 km transect of natural disturbances and seasonality gradients in centralsouthern Amazonia. – Journal of Ecology, 104, 1335–1346.Search in Google Scholar

Simard, M., Pinto, N., Fisher, J.B., Baccini, A. 2011. Mapping forest canopy height globally with spaceborne lidar. – Journal of Geophysical Research, 116(G4), G04021. [WWW document]. – URL http://doi.org/10.1029/2011JG001708 [Accessed 12 July 2016].10.1029/2011JG001708Search in Google Scholar

Sims, A., Kiviste, A., Hordo, M., Laarmann, D., Gadow, K. v. 2009. Estimating tree survival: a study based on the Estonian Forest Research Plots Network. – Annales Botanici Fennici, 46, 336–352.Search in Google Scholar

Son, Y., Park, I.H., Yi, M.J., Kim, D.Y., Jin, H.O., Kim, R.H., Hwang, J.O. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. – Ecological Research, 19, 21–28.Search in Google Scholar

Stephenson, N.L., Das, A.J., Condit R., Russo, S.E., Baker, P. J., Beckman N.G., Coomes D.A., Lines, E.R., et al. 2014. Rate of tree carbon accumulation increases continuously with tree size. – Nature, 507, 90–93.Search in Google Scholar

Tappo, E. 1982. Mean characteristics of forest stands in Estonia by dominant species, site fertility and age. (Eesti NSV puistute keskmised takseertunnused puistu enamuspuuliigi, boniteedi ja vanuse järgi). Tallinn, Eesti NSV Põllumajandusministeeriumi Informatsiooni ja Juurutamise Valitsus. 72 pp. (In Estonian).Search in Google Scholar

Ter-Mikaelian, M.T., Korzukhin, M.D. 1997. Biomass equations for sixty-five North American tree species. – Forest Ecology and Management, 97, 1–24.Search in Google Scholar

Tobin, B., Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. – European Journal of Forest Research, 126, 189–196.Search in Google Scholar

Uri, V., Aosaar, J., Varik, M., Becker, H., Ligi, K., Padari, A., Kanal, A., Lõhmus, K. 2014. The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. – Forest Ecology and Management, 327, 106–117.Search in Google Scholar

Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumägi, M., Lõhmus, K. 2012. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. – Forest Ecology and Management, 267, 117–126.Search in Google Scholar

Urrutia-Jalabert, R., Malhi, Y., Lara, A. 2015. The oldest, slowest rainforests in the world? Massive biomass and slow carbon dynamics of Fitzroya cupressoides temperate forests in Southern Chile. PLoS One 10(9):e0137569.Search in Google Scholar

Vanclay, J.K. 1994. Modelling forest growth and yield: Applications to mixed tropical forests. CAB International, Wallingford, U.K. 280 pp.Search in Google Scholar

Vares, A., Lõhmus, K., Truu, M., Truu, J., Tullus, H., Kanal, A. 2004b. Productivity of black alder (Alnus glutinosa (L.) Gaertn.) plantations on reclaimed oil-shale mining detritus and mineral soils in relation to rhizosphere conditions. – Oil Shale, 21, 43−58.Search in Google Scholar

Vares, A., Tullus, H., Lõhmus, K. 2004a. Aboveground biomass, production and main mineral nutrients in young stands of black alder (Alnus glutinosa (L.) Gaertn.) of different density. – Forestry Studies / Metsanduslikud Uurimused, 40, 165–175.Search in Google Scholar

Varik, M., Aosaar, J., Uri, V. 2009. Biomass production in silver birch stands in Oxalis site type. – Forestry Studies / Metsanduslikud Uurimused, 51, 5–16.Search in Google Scholar

Võsu, A. 2012. Biomass production in 20-45 years old grey alder (Alnus incana (L.) Moench) stands. (Hall-lepikute bioproduktsioon 20–45 aastastes puistutes). – MSc Thesis, Estonian University of Life Sciences. 34 pp. (In Estonian).Search in Google Scholar

Wulder, M.A., White, J.W., Fournier, R.A., Luther, J.E., Magnussen, S. 2008. Spatially explicit large area biomass estimation: Three approaches using forest inventory and remotely sensed imagery in a GIS. – Sensors, 8, 529–560.10.3390/s8010529368114027879721Search in Google Scholar

Zasada, M., Bijak, S., Bronisz, K., Bronisz, A., Gawęda, T. 2014. Biomass dynamics in young silver birch stands on post-agricultural lands in central Poland. – Drewno, 192, 29−39.Search in Google Scholar

Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. – Silva Fennica Monographs 4, 63 pp.10.14214/sf.sfm4Search in Google Scholar

eISSN:
1736-8723
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Plant Science, Ecology, other