Acceso abierto

ALS-based wood volume models of forest stands and comparison with forest inventory data


Cite

Adermann, V. 2010. Estonia (National forest inventory report). – Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (eds.). National forest inventories: pathways for common reporting (NFI reports section). Heidelberg, Springer, 171–184.Search in Google Scholar

Anniste, J., Viilup, Ü. 2011. Determination of forest characteristics with the laser scanning. (Metsa takseertunnuste määramisest laserskanneerimise abil). – Artiklid ja uurimused. Luua Metsanduskool, 10, 38–53. (In Estonian).Search in Google Scholar

Arumäe, T., Lang, M. 2013. A simple model to estimate forest canopy base height from airborne lidar data. (Puistu esimese rinde võrastiku alguse kõrguse hindamine lennukilidari mõõdistusandmete järgi). – Forestry Studies / Metsanduslikud Uurimused, 58, 46–56.Search in Google Scholar

Arumäe, T., Lang, M. 2016. A validation of coarse scale global vegetation height map for biomass estimation in hemiboreal forests in Estonia. – Baltic Forestry, 22(2). (In press).Search in Google Scholar

Bouvier, M., Durrieu, S., Fournier, R.A., Renaud, J.P. 2015. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. – Remote Sensing of Environment, 156, 322–334.Search in Google Scholar

Kiviste, A. 1999. Estonian forest growth models. (Eesti puistute kasvumudelitest). – Transactions of the Faculty of Forestry, Estonian Agricultural University, Continuous Forest Management Planning. (EPMÜ Metsandusteadukonna toimetised, Pidev metsa korraldus), 32, 28–36. (In Estonian).Search in Google Scholar

Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M. 2011. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. – Remote Sensing of Environment, 115, 1065–1080.Search in Google Scholar

Korpela, I., Hovi, A., Korhonen, L. 2013. Backscattering of individual LiDAR pulses from forest canopies explained by photogrammetrically derived vegetation structure. – ISPRS Journal of Photogrammetry and Remote Sensing, 83, 81–93.Search in Google Scholar

Krigul, T. 1972. Forest mensuration. (Metsatakseerimine). Tallinn, Valgus. 348 pp. (In Estonian).Search in Google Scholar

Kuusk, A., Lang, M., Kuusk, J. 2013. Database of optical and structural data for the validation of forest radiative transfer models. – Kokhanovsky, A. (ed.). Light Scattering Reviews, 7, Berlin, Heidelberg, Springer, 109–148.Search in Google Scholar

Lang, M. 2010. Estimation of crown and canopy cover from airborne lidar data. (Metsa katvuse ja liituse hindamine lennukilt laserskanneriga). – Forestry Studies / Metsanduslikud Uurimused, 52, 5–17. (In Estonian with English summary).10.2478/v10132-011-0079-5Search in Google Scholar

Lang, M., Arumäe, T., Anniste, J. 2012. Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia. (Lennukilidari ja spektraalse kaugseireandmestiku kasutamine metsa peamiste takseertunnuste hindamiseks Aegviidu katsealal). – Forestry Studies / Metsanduslikud Uurimused, 56, 27–41. (In Estonian with English summary).10.2478/v10132-012-0003-7Search in Google Scholar

Lang, M., Arumäe, T., Lükk, T., Sims, A. 2014. Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 61, 47–68.Search in Google Scholar

LiDAR kõrguspunktid. 2015. (LiDAR heightpoints). [WWW document]. – URL http://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/Topograafilised-andmed/Korgusandmed/LiDAR-korguspunktid-p499.html [Accessed 15 March 2016]. (In Estonian).Search in Google Scholar

Maack, J., Lingenfelder, M., Weinacker, H., Koch, B. 2016. Modelling the standing timber volume of Baden-Württemberg – A large-scale approach using a fusion of Landsat, airborne LiDAR and National Forest Inventory data. – International Journal of Applied Earth Observation and Geoinformation, 49, 107–116.Search in Google Scholar

McGaughey, R.J. 2014. FUSION/LDV: Software for LIDAR data analysis and visualization. March 2014 – FUSION, version 3.42. United States Department of Agriculture Forest Service Pacific Northwest Research Station.Search in Google Scholar

Metsa korraldamise juhend. 2009. (Forest management guide). Riigi Teataja, RT I, 24.11.2015, 6. (In Estonian).Search in Google Scholar

Metsaressursi arvestuse riikliku registri põhimäärus. 2016. (State register for accounting of forest resource). Riigi Teataja, RT I, 12.01.2016, 2. (In Estonian).Search in Google Scholar

Næsset, E. 1997. Determination of mean tree height of forest stands using airborne laser scanner data. – ISPRS Journal of Photogrammetry & Remote Sensing, 52, 49–56.Search in Google Scholar

Næsset, E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. – Remote Sensing of Environment, 80, 88–99.Search in Google Scholar

Næsset, E., Bjerknes, K.O. 2001. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. – Remote Sensing of Environment, 78, 328–340.Search in Google Scholar

Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., Lang, M., Achten, W.M.J., Thivolle-Cazat, A., Bronisz, K., Merganič, J., Decuyper, M., Alberdi, I., Astrup, R., Mohren, F., Hasenauer, H. 2016. Comparison of carbon estimation methods for European forests. – Forest Ecology and Management, 361, 397–420.Search in Google Scholar

Nicholas, R.G., Nichoals, C.C., Culvenor, D.C. 2006. Assessment of forest structure with airborne Li-DAR and the effects of platform altitude. – Remote Sensing of Environment, 103, 140–152.Search in Google Scholar

Ozolinš, R. 2002. Forest stand assortment structure analysis using mathematical modelling. – Forestry Studies / Metsanduslikud Uurimused, 37, 33–42.Search in Google Scholar

Padari, A. 1993. Relationship between distance from sea and stand variables of Scots pine in Hiiumaa. (Hiiumaa männikute takseertunnuste sõltuvusest mere kaugusest). BSc Thesis, Estonian Agricultural University. (In Estonian).Search in Google Scholar

Padari, A., Muiste, P., Mitt, R., Pärn, L. 2009. Estimation of Estonian wood fuel resources. – Baltic Forestry, 15, 77–85.Search in Google Scholar

Pärt, E. 2010. Overview of Estonian forests. (Ülevaade: Eesti metsavarud). [WWW document]. – URL http://www.envir.ee/sites/default/files/elfinder/article_files/eestimetsavarud2.pdf [Accessed 15 March 2016]. (In Estonian).Search in Google Scholar

R Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. [WWW document]. – URL http://www.rproject.org [Accessed 15 March 2016].Search in Google Scholar

Raudsaar, M., Pärt, E., Adermann, V. 2014. Overview of Estonian forests. (Ülevaade Eesti metsavarudest). – Keskkonnaagentuur (ed.). Aastaraamat Mets 2013. (Yearbook Forest 2013). Tartu, OÜ Paar, 1–2. (In Estonian).Search in Google Scholar

Rautiainen, M., Stenberg, P., Nilson, T. 2005. Estimating canopy cover in scots pine stands. – Silva Fennica, 39, 137–142.Search in Google Scholar

Salas, C., Ene, L., Gregoire, T.G., Næsset, E., Gobakken, T. 2010. Modelling tree diameter from airborne laser scanning derived variables: a comparison of spatial statistical models. – Remote Sensing of Environment, 114, 1277–1285.Search in Google Scholar

Vain. A., Yu, W., Kaasalainen, S., Hyyppä, J. 2010. Correcting airborne laser scanning intensity data for automatic gain control effect. – IEEE Geoscience and Remote Sensing Letters, 7, 511–514.Search in Google Scholar

Vaus, M. 2005. Forest mensuration. (Metsatakseerimine). Tartu, OÜ Halo Kirjastus. 178 pp. (In Estonian).Search in Google Scholar

eISSN:
1736-8723
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Plant Science, Ecology, other