Acceso abierto

Hyperspectral reflectance models for soil salt content by filtering methods and waveband selection


Cite

[1] Peragón JM, Delgado A, Díaz JaR, Pérez-Latorre FJ. A GIS-based decision tool for reducing salinization risks in olive orchards. Agr Water Manage. 2016;166:33-41. DOI:10.1016/j.agwat.2015.12.005.10.1016/j.agwat.2015.12.005Search in Google Scholar

[2] Benini L, Antonellini M, Laghi M, Mollema P. Assessment of water resources availability and groundwater salinization in future climate and land use change scenarios: A case study from a coastal drainage basin in Italy. Water Resour Manag. 2015;30(2):731-745. DOI: 10.1007/s11269-015-1187-4.10.1007/s11269-015-1187-4Search in Google Scholar

[3] Song D, Liu B, Li X, Chen S, Li L, Ma M, et al. Hyperspectral data spectrum and texture band selection based on the subspace-rough set method. Int J Remote Sens. 2015;36(8):2113-2128. DOI: 10.1080/01431161.2015.1034892.10.1080/01431161.2015.1034892Search in Google Scholar

[4] Kattenborn T, Maack J, Faßnacht F, Enßle F, Ermert J, Koch B. Mapping forest biomass from space-Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. International J Appl Earth Observation Geoinform. 2015;35:359-367. DOI: 10.1016/j.jag.2014.10.008.10.1016/j.jag.2014.10.008Search in Google Scholar

[5] Dehaan R, Taylor G. Image-derived spectral endmembers as indicators of salinisation. Int J Remote Sens. 2003;24,(4):775-794. DOI: 10.1080/01431160110107635.10.1080/01431160110107635Search in Google Scholar

[6] Csillag F, Pásztor L, Biehl LL. Spectral band selection for the characterization of salinity status of soils. Remote Sens Environ. 1993,43(3):231-242. DOI: 10.1016/0034-4257(93)90068-9.10.1016/0034-4257(93)90068-9Search in Google Scholar

[7] Pang G, Wang T, Liao J, Li S. Quantitative model based on field-derived spectral characteristics to estimate soil salinity in Minqin County, China. Soil Sci Soc Am J. 2014;78,(2):546-555. DOI: 10.2136/sssaj2013.06.0241.10.2136/sssaj2013.06.0241Search in Google Scholar

[8] Hunt GR. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics. 1977;42,(3):501-513. DOI: 10.1190/1.1440721.10.1190/1.1440721Search in Google Scholar

[9] Hick P, Russell W. Some spectral considerations for remote sensing of soil salinity. Soil Res. 1990;28,(3):417-431. DOI:10.1071/SR9900417.10.1071/SR9900417Search in Google Scholar

[10] Hirschfeld T. Salinity determination using NIRA. Appl Spectrosc. 1985;39(4):740-741. DOI: 10.1366/0003702854250293.10.1366/0003702854250293Search in Google Scholar

[11] Tsai F, Philpot W. Derivative analysis of hyperspectral data. Remote Sens Environ. 1998;66(1):41-51. DOI: 10.1016/S0034-4257(98)00032-7.10.1016/S0034-4257(98)00032-7Search in Google Scholar

[12] Andersson M. A comparison of nine PLS1 algorithms. J Chemometr. 2009;23(10):518-529. DOI: 10.1002/cem.1248.10.1002/cem.1248Search in Google Scholar

[13] Dumarey M, Goodwin DJ, Davison C. Multivariate modelling to study the effect of the manufacturing process on the complete tablet dissolution profile. Int J Pharm. 2015;486(1):112-120. DOI: 10.1016/j.ijpharm.2015.03.040.10.1016/j.ijpharm.2015.03.040Search in Google Scholar

[14] Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J. OPLS methodology for analysis of pre-processing effects on spectroscopic data. Chemometr Intell Lab. 2006;84(1):153-158. DOI: 10.1016/j.chemolab.2006.03.013.10.1016/j.chemolab.2006.03.013Search in Google Scholar

[15] Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometr. 2002;16(3):119-128. DOI: 10.1002/cem.695.10.1002/cem.695Search in Google Scholar

[16] Gosselin R, Rodrigue D, Duchesne C. A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications. Chemometr Intell Lab. 2010;100(1):12-21. DOI: 10.1016/j.chemolab.2009.09.005.10.1016/j.chemolab.2009.09.005Search in Google Scholar

[17] Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 2. Application to simulated and glass spectral data. Anal Chem. 1988;60(11):1202-1208. DOI: 10.1021/ac00162a021.10.1021/ac00162a021Search in Google Scholar

[18] Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967;62(318):399-402. DOI: 10.1080/01621459.1967.10482916.10.1080/01621459.1967.10482916Search in Google Scholar

[19] Martens H, Nielsen JP, Engelsen SB. Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Anal Chem. 2003;75(3):394-404. DOI: 10.1021/ac020194w.10.1021/ac020194wSearch in Google Scholar

[20] Dhanoa M, Lister S, Sanderson R, Barnes R. The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. J Near Infrared Spectrosc. 1994;2(1):42-47. DOI: 10.1255/jnirs.30.10.1255/jnirs.30Search in Google Scholar

[21] Inoue Y, Sakaiya E, Zhu Y, Takahashi W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens Environ. 2012;126:210-221. DOI: 10.1016/j.rse.2012.08.026.10.1016/j.rse.2012.08.026Search in Google Scholar

[22] Vašát R, Kodešová R, Borůvka L, Klement A, Jakšík O, Gholizadeh A. Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma. 2014;232:208-218. DOI: 10.1016/j.geoderma.2014.05.012.10.1016/j.geoderma.2014.05.012Search in Google Scholar

[23] Wang G, Yin S. Quality-related fault detection approach based on orthogonal signal correction and modified PLS. IEEE Trans Industr Informatics. 2015;11(2):398-405. DOI: 10.1109/TII.2015.2396853.10.1109/TII.2015.2396853Search in Google Scholar

[24] Eastment H, Krzanowski W. Cross-validatory choice of the number of components from a principal component analysis. Technometrics. 1982;24(1):73-77. DOI: 10.1080/00401706.1982.10487712.10.1080/00401706.1982.10487712Search in Google Scholar

[25] Gomez C, Lagacherie P, Coulouma G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma. 2008;148(2):141-148. DOI: 10.1016/j.geoderma.2008.09.016.10.1016/j.geoderma.2008.09.016Search in Google Scholar

[26] Whiting ML, Li L, Ustin SL. Predicting water content using Gaussian model on soil spectra. Remote Sens Environ. 2004;89(4):535-552. DOI: 10.1016/j.rse.2003.11.009.10.1016/j.rse.2003.11.009Search in Google Scholar

[27] Elmasry G, Wang N, Vigneault C, Qiao J, Elsayed A. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT-Food Science and Technology. 2008;41(2):337-345. DOI: 10.1016/j.lwt.2007.02.022.10.1016/j.lwt.2007.02.022Search in Google Scholar

[28] Griffin JL. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol. 2003;7(5):648-654. DOI: 10.1016/j.cbpa.2003.08.008.10.1016/j.cbpa.2003.08.008Search in Google Scholar

[29] Lin W-S, Yang C-M, Kuo B-J. Classifying cultivars of rice (Oryza sativa L.) based on corrected canopy reflectance spectra data using the orthogonal projections to latent structures (O-PLS) method. Chemometr Intell Lab. 2012;115:25-36. DOI: 10.1016/j.chemolab.2012.04.005.10.1016/j.chemolab.2012.04.005Search in Google Scholar

[30] Tapp HS, Kemsley EK. Notes on the practical utility of OPLS. TrAC Trends Anal Chem. 2009;28(11):1322-1327. DOI: 10.1016/j.trac.2009.08.006.10.1016/j.trac.2009.08.006Search in Google Scholar

[31] Cho MA, Skidmore A, Corsi F, Van Wieren SE, Sobhan I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Observ Geoinformat. 2007;9(4):414-424. DOI: 10.1016/j.jag.2007.02.001.10.1016/j.jag.2007.02.001Search in Google Scholar

eISSN:
1898-6196
Idioma:
Inglés