Acceso abierto

Interleukin IL-1α, IL-6, IL-8, IL-10 Expression in Different Staging of Cervical Intraepithelial Neoplasia


Cite

1. Adurthi S, Mukherjee G, Krishnamurthy H, Sudhir K, Bafna UD, Umadevi K, Jayshree RS. Functional tumour infiltrating TH1 and TH2 effectors in large early-stage cervical cancer are suppressed by regulatory T cells // Int J Gynecol Cancer, 2012; 22:1130 – 1137Search in Google Scholar

2. Arany I, Grattendick KG, Tyring SK. Interleukin-10 induces transcription of the early promoter of human papillomavirus type 16 (HPV16) through the 5’-segment of the upstream regulatory region (URR) // Antiviral Res, 2002; 55:331-339Search in Google Scholar

3. Azar KK, Tani M, Yasuda H, Sakai A, Inoue M, Sasagawa T. Increased secretion patterns of interleukin-10 and tumour necrosis factor-alpha in cervical squamous intraepithelial lesions // Hum Pathol, 2004; 35:1376 – 1384Search in Google Scholar

4. Bae JY, Kim EK, Yang DH, Zhang X, Park YJ, Lee DY, Che CM, Kim J. Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression // Neoplasia, 2014; 16:928 – 938Search in Google Scholar

5. Bais AG, Beckmann I, Lindemans J, Ewing PC, Meijer CJ, Snijders PJ, Helmerhost TJ. A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions // J Clin Pathol, 2005; 58: 1096 – 1100Search in Google Scholar

6. Behbakht K, Friedman J, Heimler I, Aroutcheva A, Simoes J, Fao S. Role of the vaginal microbiological ecosystem and cytokine profile in the promotion of cervical dysplasia: a case–control study // Infect Dis Obstet Gynecol, 2002; 10:181 – 186Search in Google Scholar

7. Belokrinitskaia TE, Vitkovskii IuA, Ponomareva IuN. Role of cytokines in the development of immunologic and homeostatic disorders in advanced dysplasia and carcinoma of the uterine cervix // Vopr Onkol, 2003; 49:51 – 54Search in Google Scholar

8. Bermundez-Morales VH, Gutierrez LX, Alcocer-Gonzalez JM, Burguete A, Madrid-Marina V. Correlation between IL-10 gene expression and HPV infection in cervical cancer: a mechanism for immune response escape // Cancer Invest, 2008; 26:1037 – 1043Search in Google Scholar

9. Berti FCB, Pereira APL, Cebinelli GCM, Trugilo KP, Brajao de Oliveira K. The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma // Cytokine Growth Factor Rev, 2017; 34:1 – 13Search in Google Scholar

10. Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group // J Natl Cancer Inst, 1995; 87:796-80210.1097/00006254-199510000-00015Search in Google Scholar

11. Carrero Y, Mosquera J, Callejas D, Alvarez-Mon M. In situ increased chemokine expression in human cervical intraepithelial neoplasia // Pathol Res Pract, 2015; 211:281 – 285Search in Google Scholar

12. Castrilli G, Tatone D, Diodoro MG, Rosini S, Piantelli M, Musiani P. Interleukin 1alpha and interleukin 6 promote the in vitro growth of both normal and neoplastic human cervical epithelial cells // Br J Cancer, 1997; 75:855 – 859Search in Google Scholar

13. Chua KL, Hjerpe A. Persistence of human papillomavirus (HPV) infections preceding cervical carcinoma // Cancer, 1996; 77:121-127Search in Google Scholar

14. Ciavattini A, Clemente N, Tsiroglou D, Sopracordevole F, Serri M, Delli Carpini G, Papiccio M, Cattani P. Follow up in women with biopsy diagnosis of cervical low-grade squamous intraepithelial lesion (LSIL): how long should it be? // Arch Gynecol Obstet, 2017; 295:997 – 1003Search in Google Scholar

15. Clerici M, Shearer GM, Clerici E. Cytokine dysregulation in invasive cervical carcinoma and other human neoplasias: time to consider the TH1/ TH2 paradigm // J Natl Cancer Inst, 1998; 90: 261 – 263Search in Google Scholar

16. Commins SP, Borish L, Steinke JW. Immunologic messenger molecules: cytokines, interferons, and chemokines // J Allergy Clin Immunol, 2010; 125:S53 – S7210.1016/j.jaci.2009.07.00819932918Search in Google Scholar

17. Crowley-Nowick PA, Ellenberg JH, Vermund SH, Douglas SD, Holland CA, Moscicki AB. Cytokine profile in genital tract secretions from female adolescents: impact of human immunodeficiency virus, human papillomavirus, and other sexually transmitted pathogens // J Infect Dis, 2000; 181:939 – 945Search in Google Scholar

18. Daniilidis A, Koutsos J, Oikonomou Z, Nasioutziki M, Hatziparadisi K, Tantanasis T. Cytokines of cervical mucosa and human papilloma virus infection of the cervix: A descriptive study // Acta Cytol, 2016; 60:58 – 64Search in Google Scholar

19. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 // Int J Cancer, 2015; 136:E359-38610.1002/ijc.2921025220842Search in Google Scholar

20. Fernandes AP, Goncalves Ma, Duarte G, Cunha FQ, Simoes RT, Donadi EA. HPV16, HPV18, and HIV infection may influence cervical cytokine intralesional levels // Virology, 2005; 334:294 – 298Search in Google Scholar

21. Fichorova RN, Andreson DJ. Differential expression of immunobiological mediators by immortalized human cervical and vaginal epithelial cells // Biol Reprod. 1999; 60:508 – 514Search in Google Scholar

22. Gonzalez-Bosquet E, Fernandez S, Sabra S, Lailla JM. Negative HPV testing among patients with biopsy-proven cervical intraepithelial neoplasia grade 2/3 or cervical cancer // INT J Gynaecol Obstet, 2017; 136:229 – 231Search in Google Scholar

23. Iglesias M, Yen K, Gaiotti D, Hildesheim A, Stoler MH, Woodworth CD. Human papillomavirus type 16 E7 protein sensitizes cervical keratinocytes to apoptosis and release of interleukin-1alpha // Oncogene, 1998; 17:1195 – 1205Search in Google Scholar

24. Iwata T, Fujii T, Morii T, Saito M, Sugiyama J, Nishio H, Morisada T, Tanaka K, Yaguchi T, Kawakami Y, Aoki D. Cytokine profile in cervical mucosa of Japanese patients with cervical intraepithelial neoplasia // Int J Clin Oncol, 2015; 20:126 – 133Search in Google Scholar

25. Karim R, Meyers C, Backendorf C, Ludigs K, Offringa R, van Ommen GJ, Melief CJ, van der Burg SH, Boer JM. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes // PLoS One, 2011; 6:e1784810.1371/journal.pone.0017848305677021423754Search in Google Scholar

26. Kumar V, Abbas A, Aster J. Female genital system and breast // In: Kumar R. Robbins Basic pathology. 9th ed. Philadelphia: Saunders/Elsavier; 2012: 685 – 689Search in Google Scholar

27. Liu LB, Xie F, Chang KK, Li MQ, Meng YH, Wang XH, Li H, Li DJ, Yu JJ. Hypoxia promotes the proliferation of cervical carcinoma cells through stimulating the secretion of IL-8 // Int J Clin Exp Pathol, 2014;7:575 – 583Search in Google Scholar

28. Long X, Yingnan Y, Zhang L, Liu P, Yu W, Wei F, Ren X, Yu J. IL-8, a novel messenger to cross-link inflammation and tumour EMT via autocrine and paracrine pathways (review) // Int J Oncol, 2015; 48:5 – 12Search in Google Scholar

29. Merrick DT, Winberg G, McDougall JK. Reexpression of interleukin 1 in human papillomavirus 18 immortalized keratinocytes inhibits their tumorigenicity in nude mice // Cell Growth Differ, 1996; 7:1661 – 1669Search in Google Scholar

30. Mhatre M, McAndrew T, Carpenter C, Burk RD, Einstein MH, Herold BC. Cervical intraepithelial neoplasia is associated with genital tract mucosal inflammation // Sex Transm Dis, 2012; 39: 591 – 597Search in Google Scholar

31. Mota F, Rayment N, Chong S. The antigenpresenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium // Clin Exp Immunol, 1999; 116:33 – 40Search in Google Scholar

32. Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development // Front Immunol, 2012; 2:98Search in Google Scholar

33. Muraille E, Leo O. Revisiting the Th1/Th2 paradigm // Scand J Immunol, 1998; 47:1 – 9Search in Google Scholar

34. Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidaya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer // Asian Pac J Cancer Prev, 2014; 15:3851 – 3864Search in Google Scholar

35. Peghini BC, Abdalla DR, Barcelos AC, Teodoro Ld, Murta EF, Michelin MA. Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia // Hum Immunol, 2012; 73:920-926Search in Google Scholar

36. Pilmane M, Rumba I, Sundler F, Luts A. Patterns of distribution and occurrence of neuroendocrine elements in lungs of humans with chronic lung diseases // Proc. Of Latvian Academy of Sciences, Section B, 1998; 52:144-152Search in Google Scholar

37. Rider P, Carmi Y, Voronov E, Apte RN. Interleukin-1α // Semin Immunol, 2013; 25:430-438Search in Google Scholar

38. Romagnani S. Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease // Int J Clin Lab Res, 1991; 21:152 – 158Search in Google Scholar

39. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Pecorelli S, Roman JJ, Parham GP, Cannon MJ. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirusspecific CD8(+) cytotoxic T lymphocytes // J Virol, 2000; 74:4729 – 4737Search in Google Scholar

40. Scott ME, Ma Y, Kuzmich L, Moscicki AB. Diminished IFN-gamma and elevated Foxp3 mRNA expression in the cervix are associated with CIN 2 or 3 // Int J Cancer, 2009; 124:1379 – 1383Search in Google Scholar

41. Song SH, Lee JK, Seok OS, Saw HS. The relationship between cytokines and HPV-16, HPV-16 E6, E7, and high-risk HPV viral load in the uterine cervix // Gynecol Oncol, 2007; 104:732 – 738Search in Google Scholar

42. Tavares-Murta BM, de Resende AD, Cunha FQ, Murta EF. Local profile of cytokines and nitric oxide in patients with bacterial vaginosis and cervical intraepithelial neoplasia // Eur J Obstet Gynecol Reprod Biol, 2008; 138:93 – 99Search in Google Scholar

43. The centre of disease and control of Latvia. Provisional statistical data on citizen mortality // Statistical yearbook of health care in Latvia 2015, 2015; 1:104Search in Google Scholar

44. Tjiong MY, van der Vange N, ten Kate FJ, Tjong- A-Hung SP, ter Schegget J, Burger MP, Out TA. Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer // Gynecol Oncol, 1999; 73:285 – 291Search in Google Scholar

45. Tjiong MY, van der Vange N, ter Schegget JS, Burger MP, ten Kate FW, Out TA. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia // Cytokine, 2001; 14:357 – 360Search in Google Scholar

46. Wei LH, Kuo ML, Chen CA, Cheng WF, Cheng SP, Hsieh FJ, Hsieh CY. Interleukin-6 in cervical cancer: the relationship with vascular endothelial growth factor // Gynecol Oncol, 2001; 82:49 – 56Search in Google Scholar

47. Wei LH, Kuo ML, Chen CA, Chou CH, Cheng WF, Chang MC, Su JL, Hsieh CY. The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway // Oncogene, 2001; 20:5799 – 5809Search in Google Scholar

48. Wei LH, Kuo ML, Chen CA, Chou CH, Lai KB, Lee CN, Hsieh CY. Interleukin-6 promotes cervical tumour growth by VEGF-dependent angiogenesis via a STAT3 pathway // Oncogene, 2003; 22:1517 – 1527Search in Google Scholar

49. Woodworth CD, McMullin E, Iglesias M, Plowman GD. Interleukin 1 alpha and tumour necrosis factor alpha stimulate autocrine amphiregulin expression and proliferation of human papillomavirusimmortalized and carcinoma-derived cervical epithelial cells // Proc Natl Acad Sci U S A, 1995; 92:2840 – 2844Search in Google Scholar

50. Woodworth CD, Simpson S. Comparative lymphokine secretion by cultured normal human cervical keratinocytes, papillomavirusimmortalized, and carcinoma cell lines // Am J Pathol, 1993; 142:1544 – 1555Search in Google Scholar

eISSN:
1407-981X
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Medicine, Clinical Medicine, Surgery, other