Acceso abierto

Inhomogeneous vortex tangles in counterflow superfluid turbulence: flow in convergent channels

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

1. P. Granieri, B. Baudouy, A. Four, F. Lentijo, A. Mapelli, P. Petagna, and D. Tommasini, Steady-state heat transfer through micro-channels in pressurized He II, AIP Conf. Proc., vol. 1434, pp. 231–238, 2011. DOI:10.1063/1.4706925.10.1063/1.4706925Search in Google Scholar

2. J. Maurer and P. Tabeling, Local investigation of superfluid turbulence, EPL (Europhysics Letters), vol. 43, no. 1, p. 29, 1998.10.1209/epl/i1998-00314-9Search in Google Scholar

3. P.-E. Roche, P. Diribarne, T. Didelot, O. Français, L. Rousseau, and H. Willaime, Vortex density spectrum of quantum turbulence, EPL (Europhysics Letters), vol. 77, no. 6, p. 66002, 2007.Search in Google Scholar

4. A. W. Baggaley, L. K. Sherwin, C. F. Barenghi, and Y. A. Sergeev, Thermally and mechanically driven quantum turbulence in helium II, Phys. Rev. B, vol. 86, p. 104501, 2012.Search in Google Scholar

5. R. J. Donnelly, Quantized vortices in helium II. Cambridge: Cambridge University Press, 1991.Search in Google Scholar

6. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence. Berlin: Springer, 2001.10.1007/3-540-45542-6Search in Google Scholar

7. M. Tsubota, M. Kobayashi, and H. Takeuchi, Quantum hydrodynamics, Phys. Rep., vol. 522, pp. 191–238, 2012. DOI:10.1016/j.physrep.2012.09.007.10.1016/j.physrep.2012.09.007Search in Google Scholar

8. S. van Sciver, Helium cryogenics. Berlin: Springer, second ed., 2012.10.1007/978-1-4419-9979-5Search in Google Scholar

9. S. K. Nemirovskii, Quantum turbulence: Theorethical and numerical problems, Phys. Rep., vol. 524, pp. 85–202, 2013. DOI:10.1016/j.physrep.2012.10.005.10.1016/j.physrep.2012.10.005Search in Google Scholar

10. W. F. Vinen, Mutual friction in a heat current in liquid helium II-III. theory of the mutual friction, Proc. Roy. Soc. London, vol. A240, pp. 493–515, 1957. DOI:10.1098/rspa.1957.0191.10.1098/rspa.1957.0191Search in Google Scholar

11. J. Castiglione, P. J. Murphy, J. T. Tough, F. Mayot, and Y. Pomeau, Propagating and stationary superfluid turbulent fronts, Phys. B, vol. 100, pp. 575–595, 1995. DOI:10.1007/BF00751526.10.1007/BF00751526Search in Google Scholar

12. J. F. Kafkalidis, G. Klinich III, and J. T. Tough, Superfluid turbulence in a nonuniform rectangular channel, Rep. Prog. Phys., vol. 50, p. 15909 (20 pages), 1994. DOI:10.1103/PhysRevB.50.15909.10.1103/PhysRevB.50.159099975960Search in Google Scholar

13. G. Klinich III, J. F. Kafkalidis, and J. T. Tough, Superfluid Turbulence in Converging and Diverging Rectangular Channels, J. Low Temp. Phys., vol. 107, pp. 327–346, 1997. DOI:10.1007/BF02397461.10.1007/BF02397461Search in Google Scholar

14. J. P. Murphy, J. Castiglione, and J. T. Tough, Superfluid turbulence in a nonuniform circular channel, J. Low Temp. Phys., vol. 92, pp. 307–334, 1993. DOI:10.1007/BF00682294.10.1007/BF00682294Search in Google Scholar

15. J. F. Kafkalidis, G. Klinich III, and J. T. Tough, The vortex line density in nonuniform superfluid turbulence, Physica B, vol. 194–196, pp. 717–718, 1994. DOI:10.1016/0921-4526(94)90688-2.10.1016/0921-4526(94)90688-2Search in Google Scholar

16. S. K. Nemirovskii, Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence, Phys. Rev. B, vol. 81, p. 64512 (10 pages), 2010. DOI:10.1103/PhysRevB.81.064512.10.1103/PhysRevB.81.064512Search in Google Scholar

17. S. K. Nemirovskii, Propagation of a Turbulent Fronts in Quantum Fluids, J. Low Temp. Phys., vol. 162, pp. 347–353, 2011. DOI:10.1007/s10909-010-0252-x.10.1007/s10909-010-0252-xSearch in Google Scholar

18. L. Kondaurova and S. K. Nemirovskii, Numerical study of decay of vortex tangles in superfluid helium at zero temperature, Phys. Rev. B, vol. 86, p. 134506 (13 pages), 2012. DOI:10.1103/PhysRevB.86.134506.10.1103/PhysRevB.86.134506Search in Google Scholar

19. J. A. Geurst, Hydrodynamics of quantum turbulence in He II: Vinen’s equation derived from energy and impulse of vortex tangle, Physica B, vol. 154, pp. 327–343, 1989. DOI:10.1016/0921-4526(89)90167-1.10.1016/0921-4526(89)90167-1Search in Google Scholar

20. J. A. Geurst, Hydrodynamic theory of superfluid turbulence in He II and Schwarz’s vortex modelling, Physica A, vol. 183, pp. 279–303, 1992. http://EconPapers.repec.org/RePEc:eee:phsmap:v:183:y:1992:i:3:p:279-303.10.1016/0378-4371(92)90148-JSearch in Google Scholar

21. J. A. Geurst and H. van Beelen, Hydrodynamics of superfluid turbulence in He II: three-dimensional theory, Physica A, vol. 206, pp. 58–92, 1994. http://EconPapers.repec.org/RePEc:eee:phsmap:v:206:y:1994:i:1:p:58-92.10.1016/0378-4371(94)90118-XSearch in Google Scholar

22. M. S. Mongiovì and D. Jou, Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence, Phys. Rev. B, vol. 75, p. 24507 (14 pages), 2007. DOI:10.1103/PhysRevB.75.024507.10.1103/PhysRevB.75.024507Search in Google Scholar

23. L. Saluto, M. S. Mongiovì, and D. Jou, Vortex diffusion and vortex-line hysteresis in radial quantum turbulence, Physica B, vol. 440C, pp. 99–103, 2014. DOI:10.1016/j.physb.2014.01.041.10.1016/j.physb.2014.01.041Search in Google Scholar

24. K. W. Schwarz, Three-dimensional vortex dynamics in superfluid He 4: Homogeneous superfluid turbulence, Phys. Rev. B, vol. 38, pp. 2398–2417, 1988. DOI:10.1103/PhysRevB.38.2398.10.1103/PhysRevB.38.23989946544Search in Google Scholar

25. L. Saluto, D. Jou, and M. S. Mongiovì, Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence, Physica A, vol. 406, pp. 272–280, 2014. DOI:10.1016/j.physa.2014.03.062.10.1016/j.physa.2014.03.062Search in Google Scholar

26. L. J. Campbell, Driven, dissipative superfluids: Radial counter-flow of rotating 4He, Phys. Rev. B, vol. 36, pp. 6773–6781, 1987. DOI:10.1103/PhysRevB.36.6773.10.1103/PhysRevB.36.67739942400Search in Google Scholar

27. M. S. Mongiovì and D. Jou, Generalization of Vinen’s equation including transition to superfluid turbulence, J. Phys., vol. 17, pp. 4423–4440, 2005. http://stacks.iop.org/0953-8984/17/i=28/a=003.Search in Google Scholar

28. L. Saluto, M. S. Mongiovì, and D. Jou, Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component, Z. Angew. Math. Phys., vol. 65, pp. 531–548, 2014. DOI:10.1007/s00033-013-0372-7.10.1007/s00033-013-0372-7Search in Google Scholar

29. L. Saluto, Stationary heat flux profile in turbulent helium II in a semi-infinite cylindrical channel, in Bollettino di Matematica Pura e Applicata, vol. V, pp. 133–144, Aracne, 2012.Search in Google Scholar

30. M. Sciacca, M. S. Mongiovì, and D. Jou, Alternative Vinen equation and its extension to rotating counterflow superfluid turbulence, Physica B, vol. 4038, pp. 2215–2224, 2008. DOI:10.1016/j.physb.2007.12.001.10.1016/j.physb.2007.12.001Search in Google Scholar

31. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in thermal counterflow, Phys. Rev. B, vol. 27(5), pp. 2788–2799, 1983. DOI:10.1103/PhysRevB.27.2788.10.1103/PhysRevB.27.2788Search in Google Scholar

eISSN:
2038-0909
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics