Acceso abierto

Properties on a subclass of univalent functions defined by using a multiplier transformation and Ruscheweyh derivative

  
04 abr 2017

Cite
Descargar portada

In this paper we have introduced and studied the subclass ℛ𝒥 (d, α, β) of univalent functions defined by the linear operator RIn,λ,lγf(z)$RI_{n,\lambda ,l}^\gamma f(z)$ defined by using the Ruscheweyh derivative Rnf(z) and multiplier transformation I (n, λ, l) f(z), as RIn,λ,lγ:𝒜𝒜$RI_{n,\lambda ,l}^\gamma :{\cal A} \to {\cal A}$, RIn,λ,lγf(z)=(1γ)Rnf(z)+γI(n,λ,l)f(z)$RI_{n,\lambda ,l}^\gamma f(z) = (1 - \gamma )R^n f(z) + \gamma I(n,\lambda ,l)f(z)$, zU, where 𝒜n ={f ∈ ℋ(U) : f(z) = z + an+1zn+1 + . . . , zU}is the class of normalized analytic functions with 𝒜1 = 𝒜. The main object is to investigate several properties such as coefficient estimates, distortion theorems, closure theorems, neighborhoods and the radii of starlikeness, convexity and close-to-convexity of functions belonging to the class ℛ𝒥(d, α, β).

Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Matemáticas, Matemáticas generales