Cite

1. Amaretti, A., Tamburini, E., Bernardi, T., Pompei, A., Zanoni, S., Vaccari, G., Matteuzzi, D., & Rossi, M. (2006). Substrate preference of Bifidobacterium adolescentis MB 239: compared growth on single and mixed carbohydrates. Applied Microbiology Biotechnology, 73, 654-662. DOI: 10.1007/s00253-006-0500-9.10.1007/s00253-006-0500-9Search in Google Scholar

2. AOAC (1999). Official Methods of Analysis of AOAC International. 16th edition. AOAC International, Gaithersburg.Search in Google Scholar

3. Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agroindustrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 121-203. DOI: doi:10.1016/j.foodchem.2005.07.042.10.1016/j.foodchem.2005.07.042Search in Google Scholar

4. Beumer, R.R., De Vries, J., & Rombouts, F.M. (1992). Campylobacter jejuni non-culturable coccoid cells. International Journal of Food Microbiology, 15 (1-2), 153-163. DOI: 10.1016/0168-1605(92)90144-R.10.1016/0168-1605(92)90144-RSearch in Google Scholar

5. Boke, H., Aslim, B., & Alp, G. (2010). The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPS) produced by yogurt starter bacteria. Archives of Biological Sciences, 62 (2), 323-328. DOI: 10.2298/ABS1002323B.10.2298/ABS1002323BSearch in Google Scholar

6. Bozalan, N.K., & Karadeniz, F. (2011). Carotenoid profile, total phenolic content, and antioxidant activity of carrots. International Journal of Food Properties, 14 (5),1060-1068. DOI:10.1080/10942910903580918.10.1080/10942910903580918Search in Google Scholar

7. Bustamante, P., Mayorga, L., Ramírez, H., Martínez, P., Barranco, E. & Azaola, A. (2006). Evaluación microbiológica de compuestos con actividad prebiótica. Revista Mexicana de Ciencias Farmacéuticas, 37, 5-10.Search in Google Scholar

8. Cheynier, V. (2005). Polyphenols in foods are more complex than often thought. The American Journal of Clinical Nutrition, 81(1), 223S-229S.10.1093/ajcn/81.1.223S15640485Search in Google Scholar

9. De Souza Oliveira, R.P., Perego, P., Converti, A., & De Oliveira, M.N. (2009). Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcos thermophilus: the effect of inulin. LWT-Food Science and Technology, 42, 1015-1021. DOI: 10.1016/j.lwt.2009.01.002.10.1016/j.lwt.2009.01.002Search in Google Scholar

10. Delzenne, N.M. & Roberfroid, M.B. (1994). Physiological effects of non-digestible oligosaccharides. LWT-Food Science and Technology, 27(1), 1-6. DOI: 10.1006/fstl.1994.1001.10.1006/fstl.1994.1001Search in Google Scholar

11. Der G. & Everitt, B.S. (2001). A Handbook of Statistical Analyses using SAS. CRC Press, London, 101-116.Search in Google Scholar

12. Díaz Vela, J., Totosaus, A., & Pérez-Chabela, M.L. (2015). Integration of agroindustrial by-products as functional food ingredients: cactus pear (Opuntia ficus indica) flour and pineapple (Ananas comosus) peel flour as fiber source in cooked sausages inoculated with lactic acid bacteria. Journal of Food Processing and Preservation, 39(6), 2630-26358. DOI: DOI: 10.1111/jfpp.12513.10.1111/jfpp.12513Search in Google Scholar

13. Díaz-Vela, J., Totosaus, A., Cruz-Guerrero, A. E., & Pérez-Chabela, M.L. (2013). In vitro evaluation of the fermentation of added-value agroindustrial by-products: cactus pear (Opuntia ficus-indica L.) peel and pineapple (Ananas comosus) peel as functional ingredients. International Journal of Food Science and Technology, 48, 1460-1467. DOI: 10.1111/ijfs.12113.10.1111/ijfs.12113Search in Google Scholar

14. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. DOI: 10.1021/ac60111a017.10.1021/ac60111a017Search in Google Scholar

15. Dufour, D., Pichette, A., Mshildadze, V., Bradette-Hehert, M. E., Lavoie, S., Longtin, A., Laprise, C. & Legault, J. (2007). Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Ledum groenlandicum Retzius. Journal of Ethnopharmacology, 111 (1), 22-28. DOI:10.1016/j.jep.2006.10.021.10.1016/j.jep.2006.10.02117156957Search in Google Scholar

16. Ehrmann, M.A., Kurzak, P., Bauer, J., & Vogel, R. F. (2002). Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. Journal of Applied Microbiology, 92(5), 956-975. DOI: 10.1046/j.1365-2672.2002.01608.x.10.1046/j.1365-2672.2002.01608.x11972703Search in Google Scholar

17. Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C. & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124 (2), 411-421. DOi: 10.1016/j.foodchem.2010.06.077.10.1016/j.foodchem.2010.06.077Search in Google Scholar

18. Figuerola, F., Hurtadi, M.L., Estévez, A.M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91 (3), 395-401. DOI: 10.1016/j.foodchem.2010.06.077.10.1016/j.foodchem.2010.06.077Search in Google Scholar

19. Gibson, G.R., Probert, H.M., Loo, J.V., Rastall, R.A., Roberfroid, M.B. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2): 259-275. DOI: 10.1079/NRR200479.10.1079/NRR20047919079930Search in Google Scholar

20. González-Montelongo, R., Lobo, M.G., & González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chemistry, 119, 1030-1039. DOi: 10.1016/j.foodchem.2009.08.012.10.1016/j.foodchem.2009.08.012Search in Google Scholar

21. Gorinstein, S., Martin-Belloso, O., Lojek, A., Cíz, M., Soliva-Fortuny, R., Park, Y.-S., Caspi, A., Libman, I. & Trakhtenberg, S. (2002). Comparative content of some phytochemicals in Spanish apples, peaches and pears. Journal of the Science of Food and Agriculture, 82 (10), 1166-1170. DOI: 10.1002/jsfa.1178.10.1002/jsfa.1178Search in Google Scholar

22. Grigelmo-Miguel, N., & Martin-Belloso, O. (1999). Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT-Food Science and Technology, 32 (8), 503-508. DOI: 10.1006/fstl.1999.0587.10.1006/fstl.1999.0587Search in Google Scholar

23. Huebner, J., Wehling, R. I., & Hutkins, R.W. (2007). Functional activity of commercial prebiotics. International Dairy Journal, 17, 770-775. DOI: 10.1016/j.idairyj.2006.10.006.10.1016/j.idairyj.2006.10.006Search in Google Scholar

24. Jacometti, G.A., Mello, L.P.R.F., Nascimento, P.H.A., Sueiro, A.C., Yamashita, F., & Mali, S. (2015). The physicochemical properties of fibrous residues from the agro industry. LWT-Food Science and Technology, 62(1), 138-143. DOI: 10.1016/j.lwt.2015.01.044.10.1016/j.lwt.2015.01.044Search in Google Scholar

25. Larrauri, J.A. (1999). New approaches for the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science and Technology, 10 (1), 3-8. DOI: 10.1016/S0924-2244(99)00016-3.10.1016/S0924-2244(99)00016-3Search in Google Scholar

26. Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Review. Bioresource Technology, 87 (2), 167-198. DOI: 10.1016/S0960-8524(02)00167-0.10.1016/S0960-8524(02)00167-0Search in Google Scholar

27. Leontowickz, M., Leontowickz, H., Goristein, S., Martin-Belloso, O., & Trakhtenberg S. (2007). Apple peels and pulp as a source of bioactive compounds and their influence on digestibility and lipid profile in normal and atherogenic rats. Medycyna Weterynaryjna, 63 (11), 1434-1436.Search in Google Scholar

28. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81(1), 230S-242S.Search in Google Scholar

29. Marlett, J.A., McBurney, M.I., & Slavin, J.L. (2002). Position of the American Dietetic Association: Health implications of dietary fiber. Journal of the American Dietetic Association, 102(7), 993-1000. DOI: 10.1016/j.jada.2008.08.007.10.1016/j.jada.2008.08.007Search in Google Scholar

30. Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A. & Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry, 135, 1520-152. DOI: 10.1016/j.foodchem.2012.05.057.10.1016/j.foodchem.2012.05.057Search in Google Scholar

31. Moongngarm, A., Trachoo, N., & Sirigungwan, N. (2011). Low molecular weight carbohydrates, prebiotic content, and prebiotic activity of selected food plants in Thailand. Advance Journal of Food Science and Technology, 3(4), 269-274.Search in Google Scholar

32. Oreopoulou, V., & Tzia, C. (2007). Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants and colorants. In: Utilization of By-Products and Treatment of Waste in the Food Industry. Oreopoulou, V., & Russ, W. (eds.) New York, Springer, 209-232.10.1007/978-0-387-35766-9_11Search in Google Scholar

33. Parkar, S. G., Stevenson, D.E., & Skinner, M.A. (2008). The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology, 124 (3), 295-298. DOI: 10.1016/j.ijfoodmicro.2008.03.017.10.1016/j.ijfoodmicro.2008.03.017Search in Google Scholar

34. Parra-Matadamas, A., Mayorga-Reyes, L., & Pérez-Chabela, M.L. (2015). In vitro fermentation of agroindustrial by-products: grapefruit albedo and peel, cactus pear peel and pineapple peel by lactic acid bacteria. International Food Research Journal, 22(2), 859-865.Search in Google Scholar

35. Pérez-Chabela M.L., J. Díaz-Vela, C.V. Menéndez, & Totosaus, A. (2013). Improvement of moisture stability and textural properties of fat and salt reduced cooked sausages by inoculation of thermotolerant lactic acid bacteria. International Journal of Food Properties, 16(8), 1789-1808. DOI:10.1080/10942912.2011.608472.10.1080/10942912.2011.608472Search in Google Scholar

36. Ramírez-Chavarín, N.L., Wacher, C., Eslava-Campos, C.A., & Pérez-Chabela, M.L. (2013). Probiotic potential of thermotolerant lactic acid bacteria strains isolated from cooked meat products. International Food Research Journal, 20 (2), 991-1000.Search in Google Scholar

37. Ramírez-Chavarín, N.L., Wacher-Rodarte, C. & Pérez-Chabela, M.L. (2010). Characterization and identification of thermotolerant lactic acid bacteria isolated from cooked sausages as bioprotective cultures. Journal of Muscle Foods, 21(3), 585-596. DOI: 10.1111/j.1745-4573.2009.00206.x.10.1111/j.1745-4573.2009.00206.xSearch in Google Scholar

38. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI: :10.1016/S0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3Search in Google Scholar

39. Roberfroid, M. (2007). Prebiotics: The concept revisited. The Journal of Nutrition, 137(3), 830S-837S.10.1093/jn/137.3.830SSearch in Google Scholar

40. Sánchez-Zapata, E., Fuentes-Zaragoza, E., Fernández-López, J., Sendra, E., Sayas, E., Navarro, C., & Pérez-Alvarez, J.A. (2009). Preparation of dietary fiber powder from tiger nut (Cyperus esculentus) milk (“Horchata”) by products and its physicochemical properties. Journal of Agricultural and Food Chemistry, 57, 7719-7725. DOI: 10.1021/jf901687r.10.1021/jf901687rSearch in Google Scholar

41. Singleton, V. L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16 (48), 144-158.10.5344/ajev.1965.16.3.144Search in Google Scholar

42. Someya, S., Yoshiki, Y., & Okubo, K. (2002). Antioxidant compounds from bananas (Musa Cavendish). Food Chemistry, 79, 351-354. DOI: 10.1016/S0308-8146(02)00186-3.10.1016/S0308-8146(02)00186-3Search in Google Scholar

43. Trowell, H. (1974). Definitions of fibre. The Lancet, 303, 503-505. DOI: 10.1016/S0140-6736(74)92802-5.10.1016/S0140-6736(74)92802-5Search in Google Scholar

44. Willey, J., Sherwood, I.M., & Woolverton, C.J. (2008). El crecimiento Microbiano. In: Microbiología de Prescott, Harley and Klein. Wiley, J., Sherwood, I.M. & Woolverton, C.J. (eds). Mc Graw Hill: Madrid, 119-148.Search in Google Scholar

45. Yeo, S-K., & Liong, M.-T. (2010). Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. Journal of Food Science and Agriculture, 90, 267-275. DOI: 10.1002/jsfa.3808.10.1002/jsfa.380820355041Search in Google Scholar

46. Zhang, D., & Hamauzu, Y. (2004). Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.). Journal of Food Agriculture and Environment, 2 (1), 95-100.Search in Google Scholar

eISSN:
2344-150X
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Industrial Chemistry, other, Food Science and Technology