Cite

AbouEisha, H., Calo, V.M., Jopek, K.,Moshkov, M., Paszyńska, A., Paszyński, M. and Skotniczny, M. (2016). Element partition trees for two- and three-dimensional h-refined meshes and their use to optimize direct solver performance. Part II: Heuristic algorithms, Journal of Computational and Applied Mathematics, (submitted).Search in Google Scholar

AbouEisha, H., Gurgul, P., Paszyńska, A., Paszyński, M., Ku´znik, K. and Moshkov, M. (2015). An automatic way of finding robust elimination trees for a multi-frontal sparse solver for radical 2D hierarchical meshes, in R. Wyrzykowski et al. (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 8385, Springer, Berlin/Heidelberg, pp. 531-540.Search in Google Scholar

AbouEisha, H., Moshkov, M. Calo, V.M., Paszyński, M., Goik, D. and Jopek, K. (2014). Dynamic programming algorithm for generation of optimal elimination trees for multi-frontal direct solver over h-refined grids, Procedia Computer Science 29: 947-959.10.1016/j.procs.2014.05.085Search in Google Scholar

Amestoy, P.R., Davis, T.A. and Du, I.S. (1996). An approximate minimum degree ordering algorithm, SIAM Journal of Matrix Analysis & Application 17(4): 886-905.10.1137/S0895479894278952Search in Google Scholar

Amestoy, P.R., Duff, I.S. and L’Excellent, J.-Y. (2000). Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering 184(2): 501-520.10.1016/S0045-7825(99)00242-XSearch in Google Scholar

Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. and Koster, J. (2001). A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23(1): 15-41.10.1137/S0895479899358194Search in Google Scholar

Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32(2): 136-156.10.1016/j.parco.2005.07.004Search in Google Scholar

Babuška, I. and Rheinboldt, W.C. (1978). Error estimates for adaptive finite element computations, SIAM Journal of Numerical Analysis 15(4): 736-754.10.1137/0715049Search in Google Scholar

Bao, G., Hu, G. and Liu, D. (2012). An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics 231(14): 4967-4979.10.1016/j.jcp.2012.04.002Search in Google Scholar

Barboteu, M., Bartosz, B. and Kalita, P. (2013). An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, International Journal of Applied Mathematics and Computer Science 23(2): 263-276, DOI: 10.2478/amcs-2013-0020.10.2478/amcs-2013-0020Search in Google Scholar

Becker, R., Kapp, H. and Rannacher, R. (2000). Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM Journal on Control and Optimisation 39(1): 113-132.10.1137/S0363012999351097Search in Google Scholar

Belytschko, T. and Tabbar, M. (1993). H-adaptive finite element methods for dynamic problems, with emphasis on localization, International Journal for Numerical Methods in Engineering 36(24): 4245-4265.10.1002/nme.1620362409Search in Google Scholar

Demkowicz, L. (2006). Computing with hp-Adaptive Finite Elements, Vol. I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, Boca Raton, FL .10.1201/9781420011685Search in Google Scholar

Duff, I.S., Erisman, A.M. and Reid, J.K. (1986). Direct Methods for Sparse Matrices, Oxford University Press, Oxford.Search in Google Scholar

Duff, I.S. and Reid, J.K. (1983). The multifrontal solution of indefinite sparse symmetric linear, ACM Transactions on Mathematical Software 9(3): 302-325.10.1145/356044.356047Search in Google Scholar

Duff, I.S. and Reid, J.K. (1984). The multifrontal solution of unsymmetric sets of linear equations, SIAMJournal on Scientific and Statistical Computing 5(3): 633-641.10.1137/0905045Search in Google Scholar

Errikson, K. and Johnson, C. (1991). Adaptive finite element methods for parabolic problems. I: A linear model problem, SIAM Journal on Numerical Analysis 28(1): 43-77.Search in Google Scholar

Fiałko, S. (2009a). A block sparse shared-memory multifrontal finite element solver for problems of structural mechanics, Computer Assisted Mechanics and Engineering Science 16: 117-131.Search in Google Scholar

Fiałko, S. (2009b). The block subtracture multifrontal method for solution of large finite element equation sets, Technical Transactions 8: 175-188.Search in Google Scholar

Fiałko, S. (2010). PARFES: A method for solving finite element linear equations on multi-core computers, Advanced Engineering Software 40(12): 1256-1265.10.1016/j.advengsoft.2010.09.002Search in Google Scholar

Hughues, T. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover, New York, NY.Search in Google Scholar

Karczewska, A., Rozmej, P., Szczeciński, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555-567, DOI: 10.1515/amcs-2016-0039.10.1515/amcs-2016-0039Search in Google Scholar

Kardani, M., Nazem, M., Abbo, A.J., Sheng, D. and Sloan, S.W. (2012). Refined h-adaptive finite element procedure for large deformation geotechnical problems, Computational Mechanics 49(1): 21-33.10.1007/s00466-011-0624-3Search in Google Scholar

Karypis, G. and Kumar, V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing 20(1): 359-392.10.1137/S1064827595287997Search in Google Scholar

Liu, J. (1990). The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis Applications 11(1): 134-172.10.1137/0611010Search in Google Scholar

Niemi, A., Babuška, I., Pitkaranta, J. and Demkowicz, L. (2012). Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version, Procedia Computer Science 28: 123-134.10.1007/s00366-011-0223-0Search in Google Scholar

Paszyński, M. (2016). Fast Solvers for Mesh Based Computations, Taylor & Francis/CRC Press, Boca Raton, FL.10.1201/b19078Search in Google Scholar

Patro, S.K., Selvam, P.R. and Bosch, H. (2013). Adaptiveh-finite element modeling of wind flow around bridges, Engineering Structures 48: 569-577.10.1016/j.engstruct.2012.10.002Search in Google Scholar

Schaefer, R., Łós, M., Sieniek, M., Demkowicz, L. and Paszyński, M. (2015). Quasi-linear computational cost adaptive solvers for three dimensional modeling of heating of a human head induced by cell phone, Journal of Computational Science 11: 163-174.10.1016/j.jocs.2015.09.009Search in Google Scholar

Strug, B., Paszyńska, A., Paszyński, M. and Grabska, E. (2013). Using a graph grammar system in the finite element method, International Journal of Applied Mathematics and Computer Science 23(4): 839-853, DOI: 10.2478/amcs-2013-0063.10.2478/amcs-2013-0063Search in Google Scholar

Zienkiewicz, O.C., Taylor, R. and Z., Z.J. (2013). The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam.Search in Google Scholar

eISSN:
2083-8492
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Mathematics, Applied Mathematics