Acceso abierto

Ratcheting Simulation in a Titanium-Steel Bimetallic Plate Based on the Chaboche Hardening Model


Cite

1. Chaboche J., Dang Van K., Cordier G. (1979), Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, Structural mechanics in reactor technology. Transactions, Vol. L, 1-10.Search in Google Scholar

2. Chaboche J.-L., Kanouté P. & Azzouz F. (2012), Cyclic inelastic constitutive equations and their impact on the fatigue life predictions, International Journal of Plasticity, 35, 44–66.10.1016/j.ijplas.2012.01.010Search in Google Scholar

3. Crossland B. (1982), Explosive welding of metals and its application, Clarendon Press, Oxford.Search in Google Scholar

4. Findik F. (2011), Recent developments in explosive welding, Materials & Design, 32 (3), 1081–1093.10.1016/j.matdes.2010.10.017Search in Google Scholar

5. Ganczarski A., Szubartowski D. (2015), On The Stress Free Deformation Of Linear FGM Interface Under Constant Temperature, Acta Mechanica et Automatica, 9(3), 135-139.10.1515/ama-2015-0022Search in Google Scholar

6. Gloc M., Wachowski M., Plocinski T., Kurzydlowski K.J. (2016), Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding, Journal of Alloys and Compounds, 671, 446–451.10.1016/j.jallcom.2016.02.120Search in Google Scholar

7. Gómez C., Canales M., Calvo S., Rivera R., Valdés J.R., Núñez, J.L. (2011), High and low cycle fatigue life estimation of welding steel under constant amplitude loading: Analysis of different multiaxial damage models and in-phase and out-of-phase loading effects, International Journal of Fatigue, 33 (4), 578–587.10.1016/j.ijfatigue.2010.10.015Search in Google Scholar

8. Hubel H. (1996), Basic conditions for material and structural ratcheting, Nuclear Engineering and Design, 162(1), 55–65.10.1016/0029-5493(95)01136-6Search in Google Scholar

9. Karolczuk A., Kowalski M. (2014), Fatigue phenomena in steel-titanium bimetallic composite (in Polish), Politechnika Opolska, Opole, Poland.Search in Google Scholar

10. Karolczuk A., Kowalski M., Bański R., Żok F. (2013), Fatigue phenomena in explosively welded steel–titanium clad components subjected to push–pull loading, International Journal of Fatigue, 48, 101–108.10.1016/j.ijfatigue.2012.10.007Search in Google Scholar

11. Karolczuk A., Kowalski M., Kluger K., Żok F. (2014), Identification of Residual Stress Phenomena Based on the Hole Drilling Method in Explosively Welded Steel-Titanium Composite, Archives of Metallurgy and Materials, 59 (3), 1129-1133.10.2478/amm-2014-0195Search in Google Scholar

12. Lazurenko D.V., Bataev I.A., Mali V.I., Bataev A.A., Maliutina I.N., Lozhkin V.S., Esikov M.A., Jorge A.M.J. (2016), Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment, Materials and Design, 102, 122–130.10.1016/j.matdes.2016.04.037Search in Google Scholar

13. Paul H., Faryna M., Prażmowski M., Bański R. (2011), Changes in the bonding zone of explosively welded sheets, Archives of Metallurgy and Materials, 56 (2), 463–474.10.2478/v10172-011-0050-8Search in Google Scholar

14. Paul H., Lityńska-Dobrzyńska L., Miszczyk M., Prażmowski M. (2012), Microstructure and Phase Transformations Near the Bonding Zone of Al/Cu Clad Manufactured by Explosive Welding, Archives of Metallurgy and Materials, 57 (4), 1151-1162.10.2478/v10172-012-0129-xSearch in Google Scholar

15. Song J., Kostka A., Veehmayer M., Raabe D. (2011), Hierarchical microstructure of explosive joints: Example of titanium to steel cladding, Materials Science and Engineering: A, 528 (6), 2641–2647.10.1016/j.msea.2010.11.092Search in Google Scholar

16. Sulym H., Pasternak I., Tomashivskyy M. (2016), Boundary Integral Equations for an Anisotropic Bimaterial with Thermally Imperfect Interface and Internal Inhomogeneities, Acta Mechanica et Automatica, 10 (1), 66-74.10.1515/ama-2016-0012Search in Google Scholar

17. Walczak Z. (1989), Explosive welding (in Polish), WNT.Search in Google Scholar