Acceso abierto

Modeling of the Tension and Compression Behavior of Sintered 316L Using Micro Computed Tomography


Cite

1. Disegi J. A., Eschbach L. (2000), Stainless steel in bone surgery, Injury, 31,S-D2-6.10.1016/S0020-1383(00)80015-7Search in Google Scholar

2. Ashby M. F., Evans A. G., Fleck N. A., Gibson L. J., Hutchinson J. W., Wadley H. N. G. (2000), Metal Foams: A Design Guid, Oxford: Butterworth-Heinemann.Search in Google Scholar

3. Rammerstorfer F. G., Daxner T., Bohm H. J. (2002), Modeling and Simulation. In: Degischer HP, Kriszt B, editors. Handbook of Cellular Metals: Production, Processing Applications, Germany: Wiley-VCH.10.1002/3527600558.ch6Search in Google Scholar

4. Kujime T., Tane M., Hyun S. K., Nakajima H. (2007), Threedimensional image-based modeling of lotus-type porous carbon steel and simulation of its mechanical behaviour by finite element method, Materials Science and Engineering A, 460-461, 220-226.10.1016/j.msea.2007.01.101Search in Google Scholar

5. Maruyama B., Spowart J. E., Hooper D. J., Mullens H. M., Druma A. M., Druma C., Alam M. K. (2006), A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scripta Materialia, 54, 1709-1713.10.1016/j.scriptamat.2005.12.060Search in Google Scholar

6. De Giorgi M., Carofalo A., Dattoma V., Nobile R., Palano F. (2010), Aluminium foams structural modelling, Computers & Structures, 88, 25-35.10.1016/j.compstruc.2009.06.005Search in Google Scholar

7. Marcadon V. (2011), Mechanical modelling of the creep behaviour of Hollow-Sphere Structures, Computational Materials Science, 50, 3005-3015.10.1016/j.commatsci.2011.05.019Search in Google Scholar

8. Nammi S. K., Myler P., Edwards G. (2010), Finite element analysis of closed-cell aluminium foam under quasi-static loading. Materials and Design, 31, 712-722.10.1016/j.matdes.2009.08.010Search in Google Scholar

9. Michailidis N., Stergioudi F., Omar H., Tsipas D. N. (2010), An image-based reconstruction of the 3D geometry of an Al open-cell foam and FEM modeling of the material response, Mechanics of Materials, 42, 142-147.10.1016/j.mechmat.2009.10.006Search in Google Scholar

10. Veyhl C., Belova I. V., Murch G. E., Fiedler T. (2011), Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography, Materials Science and Engineering A, 528, 4550-4555.10.1016/j.msea.2011.02.031Search in Google Scholar

11. Michailidis N., Stergioudi F., Omar H., Tsipas D. (2010), FEM modeling of the response of porous Al in compression, Computational Materials Science, 48, 282-286.10.1016/j.commatsci.2010.01.008Search in Google Scholar

12. Michailidis N. (2011) Strain rate dependent compression response of Ni-foam investigated by experimental and FEM simulation methods, Materials Science and Engineering A, 528, 4204-4208.10.1016/j.msea.2011.02.002Search in Google Scholar

13. Veyhl C., Fiedler T., Jehring U., Andersen U., Bernthaler T., Belova I. V., Murch G.E. (2013), On mechanical properties of sintered metallic fibre structures, Materials Science and Engineering A, 562, 83-88.10.1016/j.msea.2012.11.034Search in Google Scholar

14. EN ISO 6892-1:2009, Metallic materials - Tensile testing - Part 1: Method of test at room temperature, CEN: 2009.Search in Google Scholar

15. Derpeński Ł., Seweryn A. (2011), Experimental Research into Fracture of EN-AW 2024 and EW-AW 2007 Aluminum Alloy Specimens with Notches Subjected to Tension, Experimental Mechanics, 51, 1075-1094.10.1007/s11340-010-9420-9Search in Google Scholar

16. Marc® 2010, Product Documentation, Volume B: Element Library.Search in Google Scholar

17. Falkowska A., Seweryn A. (2015), Fatigue of sintered porous materials based on 316l stainless steel under uniaxial loading. Materials Science (in press).10.1007/s11003-015-9829-5Search in Google Scholar