Acceso abierto

Process Optimization Variables for Direct Metal Laser Sintering


Cite

1. Levy G.N., Seliindel R, Knith J.P.: Rapid manufacturing and rapid tooling with layer manufacturing technologies: state of the art and future perspectives. C’ERP Annals 52(2) (2003), 589-609.10.1016/S0007-8506(07)60206-6Search in Google Scholar

2. Miecielica M.: Analiza wybranych metod szybkiego prototypowania, PW IIPiB (2007).Search in Google Scholar

3. Ruszaj A.: Niekonwencjonahie metody wytwarzania elementów maszyn i narzędzi (1999).Search in Google Scholar

4. Kruth J.P., Leu M. C., Nakagawa T.: Progress in additive manufacturing and rapid prototyping, CIRP Annals 47 (2) (1998), 525-540.10.1016/S0007-8506(07)63240-5Search in Google Scholar

5. Gibson I., Rosen D. W., Stucker B.: Additive Manufacturing Technologies. Rapid Prototyping to Direct Digital Manufacturing (2010).10.1007/978-1-4419-1120-9Search in Google Scholar

6. Bercel P., C’hezan H., Bale N.: Tlie appheation of Rapid Prototyping Technologies for manufacturing the custom implants. ESAFORM Conference, Cluj-Napoca, Romania (2005).Search in Google Scholar

7. Raos P., Stoić A., Lucić M.: Rapid prototyping and rapid machining of medical implants. 4th DAAAM International Conference on Advanced Technologies for Developing Countries, Slavonski Brod, Croatia (2005).Search in Google Scholar

8. Cruz F.: Selective Laser Sintering of Customised Medical Implants Using Biocomposite Matenals. Tehmcki vjesnik 10 (2) (2003), 23-27.Search in Google Scholar

9. Das S.: Physical aspects of process control in selective laser sintering of metals. Advanced Engmeering Materials (2003), 5: 701-711.Childs T.H.C., Hauser C., Badrossamay M.: Selective laser sintering (melting) of stainless and tool steel powders: experiments and modeling, Proc. IMecliE part B, J. Engineering Manufacture 219 (2005), 339-357.10.1243/095440505X8109Search in Google Scholar

10. Dimov S., Pham D.T., et al.: Rapid tooling applications of the selective laser sintering process, Assembly Automation 21(4) (2001), 296-302.10.1108/EUM0000000006011Search in Google Scholar

11. Senthilkumaran K., Pandey P. M., Rao P. V. M.: Influence of building strategies on the accuracy of parts in selective laser sintering, Materials and Design 30 (2009), 2946-2954.10.1016/j.matdes.2009.01.009Search in Google Scholar

12. Lu L., Full J. Y. H., Wong Y. S.: Laser-induced materials and processes for rapid prototyping. Springer Science & Business Media (2010), 89-142.Search in Google Scholar

13. Wang X. C., Laoui T., Bonse J., Kruth J. P., Lauwers B., Froyen L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, The Intemation Journal of Advanced Manufacturing Technology 19 (2002), 351-357.10.1007/s001700200024Search in Google Scholar

14. Kruth J.P., Mercelis P., Van Vaerenbergli J., Froyen L., Rombouts M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 55(1) (2005), 26- 36.10.1108/13552540510573365Search in Google Scholar

15. Kruth J. P., Mercelis P., Froyen L., Rombouts M.: Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid prototyping journal 11 (1) (2005), 26-36.10.1108/13552540510573365Search in Google Scholar

16. Dobrzański L. A.: Introduction to Materials Science. Silesian University of Technology (2007).Search in Google Scholar

17. Bednarczyk I, Lesz S.. Puchała M.. Szczucka - Lasota B.. Warchoł A.: Nauka o materiałach i mechanika. Wyższa Szkoła Zarządzania Ochroną Pracy (2010).Search in Google Scholar

18. Szucki T.: Inżynieria Materiałowa: materiałoznawstwo. Oficyna Wydawnicza Politechniki Warszawskiej (1999).Search in Google Scholar

19. Storch S.. Nellessen D.. Schaefer G. Reiter R_:Selective laser sintering: qualifying analysis of metal based powder systems for automotive applications. Rapid Prototyping Journal 9 (2003). 240-252.10.1108/13552540310489622Search in Google Scholar

20. Kruth J.P. Froyen L., Van Vaerenbergh J. Mercelis P. Ronibouts M. Lauwers B.: Selective laser melting of iron based powder. J. Materials Processing Technology 149(1-3) (2004). 616 - 622.10.1016/j.jmatprotec.2003.11.051Search in Google Scholar

21. Beaman. J. J.: Solid Freeform Fabrication. A New Direction in Manufacturing (1997). 212- 216.10.1007/978-1-4615-6327-3Search in Google Scholar

22. German. R. M.: Powder Metallurgy Science. Second Edition. Metal Powder Industries Federation Press (1994), 24-35.Search in Google Scholar

23. Agawals. M.K. BourelL D.L. Beaman J.J. Marcus. H.L. and Barlow, J.W.: Direct selective laser sintering of metals. Rapid Prototyping Journal 1(1) (1995). 26-36.10.1108/13552549510078113Search in Google Scholar

24. Laoui. T. Froyen L., Kruth. J.P.: Influence of powder parameters on the selective laser sintering of tungsten caibide-cobalt. Proceedings of the 7th European Conference on Rapid Prototyping & Manufacturing (1998), 271-279.Search in Google Scholar

25. Nelson J.C. McAlea. K. amd Gray. D.: Improvements in SLS Part Accuracy. Solid Freeform Fabrication Symposium Proceedings. The University of Texas (1995), 159-169.Search in Google Scholar

26. Berzins. M. Childs. T. H. C., Dalgamo. K. W. and Stein G.: Densification and distortion in selective laser sintering of polycarbonate parts. Solid Freeform Fabrication Symposium University of Texas (1995). 196-203.Search in Google Scholar

27. Childs. T. H. C., Ryder. G. R. and Barzins. M.: Experimental and theoretical studies of selective laser sintering. Rapid Product Development (1997), 132-141.10.1007/978-1-4615-6379-2_12Search in Google Scholar

28. Tontowi. A.E. and Childs. T.H.C.: Density Prediction of crystalline Polymer Sintered Parts at Various Powjier Bed Temperatures (Selective Laser Sintering Case). Rapid Prototyping Journal 7(3) (2001). 180-184.10.1108/13552540110395637Search in Google Scholar

29. Kandis. M. Buckle}- and Bergman T. L.: Observation. Prediction and correlation of geometric shape evolution induced by Non-isothermal sintering of polymer powder. ASME J. Heat Transfer 119 (1997), 824-831.10.1115/1.2824189Search in Google Scholar

30. Zhang. Y. W., Faghri. A.Buckley. C.W., and Bergman. T.L.: Three- Dimensional Sintering of Two-Component Metal Powders with Stationary’ and Moving Laser Beams. ASME J. Heat Transfer 122(1), (2000), 150-158.10.1115/1.521445Search in Google Scholar

31. Frank. D. Fadel. G.: Expert system based selection of the preferred direction of build for rapid prototyping processes. Journal of Intelligent Manufacturing 6 (1995), 339-345.10.1007/BF00124677Search in Google Scholar

32. Kamash. T. and Flynn. D.: Build Time Estimator for Stereolithography Machines - A Preliminary Report, report released by Prototype Express. (1995).Search in Google Scholar

33. Rock. S.J. and Woźny. M.J.: A flexible file format for solid freeform fabrication. Solid Freeform Fabrication Proceedings (1991), 1-12.Search in Google Scholar

34. Guduri. S.. Crawford, R.H. and Beaman. J.J.. "Direct generation of contour files from constructive solid geometry representations. Solid Freeform Fabrication Proceedings (1993). 291-302.Search in Google Scholar

35. Vuyyuru. P.. Kirschman. C., Fadel, G.M.. Bagchi. A. and Jara-Almonte. C.: A NURBS based approach for rapid prototyping realization", proceedings pf Fifth International Conference on Rapid Prototyping (1994), 229-240.Search in Google Scholar

36. Jacobs. P.F.: The Effects of Shrinkage Variation On Rapid Tooling Accuracy. Materials & Design 21(2), (2000), 127-136.10.1016/S0261-3069(99)00060-6Search in Google Scholar

37. Jacobs. P.: Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. SME. MI, (1992).Search in Google Scholar

38. Andrew, C. L.. David. W. R.: The Effect Of Layer Orientation on The Tensile Properties of Net Shape Parts Fabricated in Stereolithography. Solid Freefonn Fabrication Proceedings (2003), 289-300.Search in Google Scholar

39. Subramanian. P.K. Vail, N.K.. Barlow. J.W., and Marcu. H.L.: Anisotropy' in Alumina Produced by SLS. Solid Freeform Fabrication Proceedings (1994), 330-338.Search in Google Scholar

40. Badrinarayan. B. and Barlow J.W.: Effect of Processing Parameters in SLS of Metal-Polymer Powders. Solid Freefonn Fabrication Proceedings (1995), 55-63.Search in Google Scholar

41. David C.T.. Richard H.C., Optimizing Part Quality with Orientation Solid Freefonn Fabrication Proceedings. 1995. 362-368.Search in Google Scholar

42. Gibson. I. and Shi. D. P.: Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyping Journal 3(4) (1997), 129-136.10.1108/13552549710191836Search in Google Scholar

43. Corbel, S.. Hinczew'ski. C. and Chartier. T.: Mechanical Properties of Ceramic Parts Made byr Stereolithography' and Sintering Process. European conference on rapid prototyping and manufacturing (1999), 115-123.Search in Google Scholar

44. Williams. J.D. and Dec kard. C.R.: Advances in modeling the effects of selected parameters on the SLS process. Rapid Prototyping Journal 4(2), (1998). 90-100.10.1108/13552549810210257Search in Google Scholar

45. Williams. J.D. Miller. D. and Deckard. C.R.: Selective Laser Sintering Part Strength as Function of Andrew Number. Scan Rate and Spot Size. Proceedings of Solid Freeform Fabrication Symposium (1996). 549-557.Search in Google Scholar

46. Gibson. I. and Shi. D. P.: Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyping Journal 3(4) (1997), 129-136.10.1108/13552549710191836Search in Google Scholar

47. Richard. H. C.: Computer Aspects of Solid Freeform Fabrication Geometry’. Process Control, and Design. Solid Freefonn Fabrication Proceedings (1993). 102-112.Search in Google Scholar

48. Tsai S. W. and Wu E. M.: A general theory of strength for anisotropic materials, journal of composite materials 5 (1971), 58-68.10.1177/002199837100500106Search in Google Scholar

49. Dolenc. W. and Makela, I.: Slicing procedure for layered manufacturing techniques. Computer-Aided Design 26(2) (1994), 119-126.10.1016/0010-4485(94)90032-9Search in Google Scholar

50. Kulkami. P. and Dutta. D.: Adaptive slicing for parametrizable surfaces for layered manufacturing. Proceedings of ASME Design Automation Conference (1995), 211-21710.1115/DETC1995-0028Search in Google Scholar

51. Tyberg, J. and Bohn. J. H.: Local adaptive slicing. Rapid Prototyping Journal 4(3) (1998). 118-127.10.1108/13552549810222993Search in Google Scholar

52. Cheng. W., Fuh. J. Y. H. Nee, A. Y. C., Wong. Y. S., Loh. H. T. and Miyazawa, T.: Multi¬objective optimization of the part-building orientation in stereolithgraphv. Rapid Prototyping Journal 1(4) (1995), 12-23.10.1108/13552549510104429Search in Google Scholar

53. Frank, D., Fadel, G.: Expert system based selection of the preferred direction of build for rapid prototypmg processes. Journal of Intelligent Manufacturing 6 (1995), 339-45.Search in Google Scholar

54. McClurkin, J.E., and Rosen, D.W.: Computer-aided build style decision support for stereolithography. Rapid Prototyping Journal 4(1) (1998), 4-13.10.1108/13552549810197505Search in Google Scholar

55. Kamesh T., Georges F., Amit B., and Nadim A.: Efficient slicing for layered Manufacturing, Rapid Prototyping Journal 4(4) (1998), 19-35.10.1108/13552549810239003Search in Google Scholar

56. Yu, G.B., and Noble, D.: The development of a laser build-time calculation program using stereolithographic apparatus (SLA), Proceedings of the 2nd European Conference on Rapid Prototyping and Manufacturing, (1993).Search in Google Scholar

57. Ahn, S. H., Montero, M., Odell, D., Roundy, S., and Wright, P. K..: Anisotropic Material Properties of Fused Deposition Modeling (FDM) ABS, Rapid Prototyping Journal 8(4) (2002), 248-257.10.1108/13552540210441166Search in Google Scholar

58. Williams, J.D., Miller, D., and Deekard, C.R.: Selective Laser Sintering Part Strength as Function of Andrew Number, Scan Rate and Spot Size, Proceedings of Solid Freeform Fabncation Symposium (1996), 549-557.Search in Google Scholar

59. Sun, M. M., and Beaman, J. J.: A Three Dimensional Model for Selective Laser Sintering, Proceedmgs of Solid Freeform Fabrication Symposium (1995), 102-109.Search in Google Scholar

60. Nikolay K. T., Maxim K. A., Audrey V. G., Victor, I. T., Taliar L. and Ludo F.: Mechanisms of selective laser sintering and heat transfer in Ti powder, Rapid prototyping journal 9(5) (2003), 314-326.10.1108/13552540310502211Search in Google Scholar

61. Manriquez-Frayre, J. A., and Bourell, D. L.: Selective Laser Sintering of Cu- Pb/Sn Solder Powders, The University of Texas at Austin, Solid Freeform Fabrication Proceedings (1991), 236-244.62. Nelson, J.C.: Selective laser sintering: a definition of the process and an empirical sintering model, PliD dissertation. University of Texas, (1993).Search in Google Scholar

63. Andrew, C. L., David, W. R.: The Effect Of Layer Orientation on The Tensile Properties of Net Shape Parts Fabricated in Stereolithography, Solid Freeform Fabrication Proceedmgs (2003), 289-300.Search in Google Scholar

64. Nelson, J., Xue, S., Samuel. Barlow, J. W., Beaman, J. J., Marcus, H. L., Bourell, D. L.: Model of the selective laser smtermg of bisphenol-A polycarbonate, Industrial & Engineering Chemistry Research 32(10) (1993), 2305-2317.10.1021/ie00022a014Search in Google Scholar

65. Miller, D., Deekard, C., Williams, J.: Variable beam size SLS workstation and enhanced SLS model. Rapid Prototypmg Journal 3(1) (1997), 4-11.10.1108/13552549710169237Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials