Acceso abierto

Fabrication of Composite Polyurethane/Hydroxyapatite Scaffolds Using Solvent-Casting Salt Leaching Technique

   | 10 abr 2015

Cite

1. Kaźnica A., Joachimiak R., Drewa T., Rawo T., Deszczyński J.: New trends in tissue engineering [in Polish], Artroskopia i Chirurgia Stawów, 3 (2007), 11-16.Search in Google Scholar

2. Bobe K., Willbold E., Morgenthal I., Andersen O.: Studnitzky T., Nellesen J., Tillmann W., Vogt C., Vano K. , Witte F., In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres, Acta Biomaterialia, 9 (2013), 8611-8623.10.1016/j.actbio.2013.03.035Search in Google Scholar

3. http://www.wisegeek.net/what-are-tissue-engineering-scaffolds.htmSearch in Google Scholar

4. http://www.karplab.net/papers/Karp_et_al___Scaffolds_for_Tissue_Engineering.pdfSearch in Google Scholar

5. X. Ma P.: Scaffolds for tissue fabrication, Materials Today, 2004, 30-40.10.1016/S1369-7021(04)00233-0Search in Google Scholar

6. Liu C., Xia Z., Czernuszka J.T.: Design and development of three-dimensional scaffolds for tissue engineering, Review Paper, Chemical Engineering Research and Design, Institution of Chemical Engineers, vol. 85, no. A7 (2007), 1051-1064.10.1205/cherd06196Search in Google Scholar

7. Ninp Z., Xiongbiao C.: Advances in Biomaterials Science and Biomedical Applications, Chapter 12: Biofabrication of Tissue Scaffolds”, ISBN 978-953-51-1051-4.Search in Google Scholar

8. Zhou H., Lawrence J.G., Bhaduri S.B.: Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review, Acta Biomaterialia 8, (2012), 1999-2016.10.1016/j.actbio.2012.01.03122342596Search in Google Scholar

9. X. Ma P., Elisseeff J.: Scaffolding in Tissue Engineering, Taylor & Francis Group, 2006, ch. 8, 111-125.Search in Google Scholar

10. Kools W.F.C.: Membrane formation by phase inversion in multicomponent polymer systems, mechanisms and morphologies, University of Twente, 1998, ISBN 90 365 10961, 2, 3, Search in Google Scholar

11. Kulbe K.C., Feng C.Y., Matsuura T.: Synthetic Polymeric Membranes, chapter 2: Synthetic Membranes for membrane processes, Springer 2008, ISBN 978-3-540-73994-4, 7, 8.Search in Google Scholar

12. Asefnejad A., Khorasani M.T., Behnamghader A., Farsadzadeh B.: Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay, International Journal of Nanomedicine, 2011, 2375-2384.10.2147/IJN.S15586320513322072874Search in Google Scholar

13. Yu L., Zhou L., Ding M., Li J., Tan H., Fu Q., He X.: Synthesis and characterization of novel biodegradable folate conjugated polyurethanes, Journal of Colloid and Interface Science, vol. 358 (2011), 376-383.Search in Google Scholar

14. Yeganeh H., Lakouraj M.M., Jamashidi S.: Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(e-caprolactone) and poly(ethylene glycol), European Polymer Journal 41, (2005), 2370-2379.10.1016/j.eurpolymj.2005.05.004Search in Google Scholar

15. Zanetta M., Quirici N., Demarosi F., Tanzi M.C., Rimondini L., Fare S.: Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts, Acta Biomaterialia 5 (2009), 1126-1136.10.1016/j.actbio.2008.12.00319147418Search in Google Scholar

16. http://www.applichem.com/fileadmin/datenblaetter/A1584_pl_PL.pdf Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials