Acceso abierto

Effect of γ-ethyl-γ-phenyl-butyrolactone (EFBL), anticonvulsant and hypnotic drug, on mouse brain catecholamine levels


Cite

1. M. Dematteis, L. Pennel and M. Mallaret, Current knowledge on gamma-hydroxybutyric acid (GHB), gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD), Rev. Prat. 62 (2012) 669-672.Search in Google Scholar

2. F. Vega-Díaz and F. Vega-Rasgado, 4-Etil-4-fenil-butirolactona, nuevo anticonvulsionante, An. Esc. Nac. Cienc. Biol. Méx. 34 (1991) 23-35.Search in Google Scholar

3. M. F. Vega-Díaz, L. A. Vega Rasgado and R. Yañez, La 4-etil-4-fenil-butirolactona, nuevo fármaco anticonvulsivo y sus relaciones con el metabolismo del GABA, Acta Med. XXX (1994) 9-18.Search in Google Scholar

4. F. Vega-Díaz, S. García and F. Vega-Rasgado, Propiedades hipnóticas de la 4-etil-4-fenil-butirolactona, An. Esc. Nac. Cienc. Biol. Méx. 37 (1992) 155-170.Search in Google Scholar

5. A. Schousboe, K. K. Madsen, M. L. Barker-Haliski and H. S. White, The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters, Neurochem. Res. 39 (2014) 1980-1987; DOI: 10.1007/s11064-014-1263-9.10.1007/s11064-014-1263-9Search in Google Scholar

6. A. Sarup, O. M. Larsson and A. Schousboe, GABA transporters and GABA-transaminase as drug targets, Curr. Drug Targets CNS Neurol. Disord. 2 (2003) 269-277; DOI: 10.2174/1568007033482788.10.2174/1568007033482788Search in Google Scholar

7. M. Avoli and M. de Curtis, GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity, Prog. Neurobiol. 95 (2011) 104-132; DOI: 10.1016/j.pneurobio.2011.07.003.10.1016/j.pneurobio.2011.07.003Search in Google Scholar

8. V. Tancredi, G. G. Hwa, C. Zona, A. Brancati and M. Avoli, Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features, Brain Res. 2 (1990)280-290; DOI: 10.1016/0006-8993(90)90173-9.10.1016/0006-8993(90)90173-9Search in Google Scholar

9. M. Avoli, J. Louvel, I. Kurcewicz, R. Pumain and M. Barbarosie, Extracellular free potassium and calcium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus, J. Physiol. 493 (1996) 707-717; DOI: 10.1113/jphysiol.1996.sp021416.10.1113/jphysiol.1996.sp021416Search in Google Scholar

10. M. E. Morris, G. V. Obrocea and M. Avoli, Extracellular K+ accumulations and synchronous GABA- mediated potentials evoked by 4-aminopyridine in the adult rat hippocampus, Exp. Brain Res. 109 (1996) 71-82; DOI: 10.1007/BF00228628.10.1007/BF00228628Search in Google Scholar

11. Y. Ben-Ari, J. L. Gaiarsa, R. Tyzio and R. Khazipov, GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations, Physiol. Rev. 87 (2007) 1215-1284; DOI: 10.1152/physrev.00017.2006.10.1152/physrev.00017.2006Search in Google Scholar

12. A. T. Gulledge and G. J. Stuart, Excitatory actions of GABA in the cortex, Neuron 37 (2003) 299-309; DOI: 10.1016/S0896-6273(02)01146-7.10.1016/S0896-6273(02)01146-7Search in Google Scholar

13. Y. Bozzi, M. Dunleavy and D. C. Henshall, Cell signaling underlying epileptic behavior, Front. Behav. Neurosci. 5 (2011) Article 45 (11 pages); DOI: 10.3389/fnbeh.2011.00045.10.3389/fnbeh.2011.00045Search in Google Scholar

14. M. A. Kurian, P. Gissen, M. Smith, S. Heales, Jr. and P. T. Clayton, The monoamine neurotransmitter disorders: an expanding range of neurological syndromes, Lancet Neurol. 10 (2011) 721-733; DOI: 10.1016/S1474-4422(11)70141-7.10.1016/S1474-4422(11)70141-7Search in Google Scholar

15. F. S. Giorgi, C. Pizzanelli, F. Biagioni, L. Murri and F. Fornai, The role of norepinephrine in epilepsy: from the bench to the bedside, Neurosci. Biobehav. Rev. 28 (2004) 507-524; DOI: 10.1016/j.neubiorev.2004.06.008.10.1016/j.neubiorev.2004.06.008Search in Google Scholar

16. M. Pinon, I. S. Racotta, R. Ortiz-Butron and R. Racotta, Catecholamines in paraganglia associated with the hepatic branch of the vagus nerve: effects of 6-hydroxydopamine and reserpine, J. Auton. Nerv. Syst. 75 (1999) 131-135.10.1016/S0165-1838(98)00184-2Search in Google Scholar

17. S. Qazi, M. Caberlin and N. Nigam, Mechanism of psychoactive drug action in the brain: simulation modeling of GABAA receptor interactions at non-equilibrium conditions, Curr. Pharm. Des. 13 (2007) 1437-1455; DOI: 10.2174/138161207780765972.10.2174/138161207780765972Search in Google Scholar

18. S. M. Simpson, A. J. Hickey, G. B. Baker, J. N. Reynolds and R. J. Beninger, The antidepressant phenelzine enhances memory in the double Y-maze and increases GABA levels in the hippocam pus and frontal cortex of rats, Pharmacol. Biochem. Behav. 102 (2012) 109-117; DOI: 10.1016/j.pbb.2012.03.027.10.1016/j.pbb.2012.03.027Search in Google Scholar

19. M. P. Galloway, M. E. Wolf and R. H. Roth, Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo, J. Pharmacol. Exp. Ther. 236 (1986) 689-698.Search in Google Scholar

20. R. L. Macdonald, M. J. McLean and J. H. Skerritt, Anticonvulsant drug mechanisms of action, Fed. Proc. 44 (1985) 2634-2639; DOI: 10.1016/0013-4694(85)90099-9.10.1016/0013-4694(85)90099-9Search in Google Scholar

21. J. O. McNamara, D. W. Bonhaus, B. J. Crain, R. L. Geliman and D. Shin, Biochemical and Pharmacologic Studies of Neurotransmitters in the Kindling Model, in Neurotransmitters and Epilepsy (Eds. P. C. Jobe and H. E. Laird II), Humana Press, Clifton (NJ) 1986, pp. 115-148.10.1007/978-1-59259-462-7_6Search in Google Scholar

22. C. Beas Zárate, J. Arauz-Contreras, A. Velazquez and A. Fería-Velasco, Monosodium L-glutamateinduced convulsions - II. Changes in catecholamine concentrations in various brain areas of adult rats, Gen. Pharmacol. 16 (1985) 489-493; DOI: 10.1016/0306-3623(85)90009-6.10.1016/0306-3623(85)90009-6Search in Google Scholar

23. C. Beas Zárate, R. Schliebs, A. Morales-Villagrán and A. Fería-Velasco, Monosodium L-glutamateinduced convulsions: changes in uptake and release of catecholamines in cerebral cortex and caudate nucleus of adult rats, Epilepsy Res. 4 (1989) 20-27; DOI: 10.1016/0920-1211(89)90054-5.10.1016/0920-1211(89)90054-5Search in Google Scholar

24. M. S. Starr, The role of dopamine in epilepsy, Synapse 22 (1996) 159-194; DOI: 10.1002/(SICI)1098-2396(199602)22:2<159::AID-SYN8>3.0.CO;2-C.10.1002/(SICI)1098-2396(199602)22:2<159::AID-SYN8>3.0.CO;2-CSearch in Google Scholar

25. S. C. Chen, Epilepsy and migraine: The dopamine hypotheses, Med. Hypotheses 66 (2006) 466-472; DOI: 10.1016/j.mehy.2005.09.045.10.1016/j.mehy.2005.09.045Search in Google Scholar

26. M. P. DeNinno, R. Schoenleber, R. J. Perner, L. Lijewski, K. E. Asin, D. R. Britton, R. MacKenzie and J. W. Kebabian, Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)-3,4- dihydro-5,6-dihydroxy-1H-2-benzopyrans: characterization of an auxiliary binding region in the D1 receptor, J. Med. Chem. 34 (1991) 2561-2569; DOI: 10.1021/jm00112a034.10.1021/jm00112a034Search in Google Scholar

27. M.-Y. Arsenault, A. Parent, P. Séguéla and L. Descarries, Distribution and morphological characteristics of dopamine-immunoreactive neurons in the midbrain of the squirrel monkey (Saimiri sciureus), J. Comp. Neurol. 267 (1988) 489-506; DOI: 10.1002/cne.902670404.10.1002/cne.902670404Search in Google Scholar

28. G. B. Baker, J. T. Wong, J. M. Yeung and R. T. Coutts, Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA), J. Affect. Disord. 21 (1991) 207-211; DOI: 10.1016/0165-0327(91)90041-P.10.1016/0165-0327(91)90041-PSearch in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other