Acceso abierto

The therapeutic agents that target ATP-sensitive potassium channels


Cite

1. B. Hille, Ion Channels of Excitable Membranes, Sinauer Associates, Sunderland 2001, p. 814.Search in Google Scholar

2. S. Choe, Potassium channel structures, Nat. Rev. Neurosci. 3 (2002) 115–121; DOI: 10.1038/nrn727.10.1038/nrn727Search in Google Scholar

3. C. C. Shieh, M. Coghlan, J. P. Sullivan and M. Gopalakrishnan, Potassium channels: molecular defects, diseases, and therapeutic opportunities, Pharmacol. Rev. 52 (2000) 557–594.Search in Google Scholar

4. C. A. Doupnik, N. Davidson and H. A. Lester, The inward rectifier potassium channel family, Curr. Opin. Neurobiol. 5 (1995) 268–277; DOI: 10.1016/0959-4388(95)80038-7.10.1016/0959-4388(95)80038-7Search in Google Scholar

5. C. G. Nichols and A. N. Lopatin, Inward rectifier potassium channels, Annu. Rev. Physiol. 59 (1997) 171–191; DOI: 10.1146/annurev.physiol.59.1.171.10.1146/annurev.physiol.59.1.171Search in Google Scholar

6. D. Bichet, F. A. Haass and L. Y. Jan, Merging functional studies with structures of inward-rectifier K(+) channels, Nat. Rev. Neurosci. 4 (2003) 957–967; DOI: 10.1038/nrn1244.10.1038/nrn1244Search in Google Scholar

7. D. E. Logothetis, D. Lupyan and A. Rosenhouse-Dantsker, Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding, J. Physiol. 582 (2007) 953–965; DOI: 10.1113/jphysiol.2007.133157.10.1113/jphysiol.2007.133157Search in Google Scholar

8. L. H. Xie, S. A. John, B. Ribalet and J. N. Weiss, Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction with other regulatory ligands, Prog. Biophys. Mol. Biol. 94 (2007) 320–335; DOI: 10.1016/j.pbiomolbio.2006.04.001.10.1016/j.pbiomolbio.2006.04.001Search in Google Scholar

9. A. Noma, ATP-regulated K+ channels in cardiac muscle, Nature305 (1983) 147–148; DOI: 10.1038/305147a0.10.1038/305147a0Search in Google Scholar

10. D. L. Cook and C. N. Hales, Intracellular ATP directly blocks K+ channels in pancreatic B-cells, Nature311 (1984) 271–273; DOI: 10.1038/311271a0.10.1038/311271a0Search in Google Scholar

11. A. E. Spruce, N. B. Standen and P. R. Stanfield, Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane, Nature316 (1985) 736–738; DOI: 10.1038/316736a0.10.1038/316736a0Search in Google Scholar

12. S. J. Ashcroft and F. M. Ashcroft, Properties and functions of ATP-sensitive K-channels, Cell. Signal. 2 (1990) 197–214; DOI 10.1016/0898-6568(90)90048-F.10.1016/0898-6568(90)90048-FSearch in Google Scholar

13. N. B. Standen, J. M. Quayle, N. W. Davies, J. E. Brayden, Y. Huang and M. T. Nelson, Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle, Science245 (1989) 177–180; DOI: 10.1126/science.2501869.10.1126/science.2501869Search in Google Scholar

14. L. Aguilar-Bryan and J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels, Endocr. Rev. 20 (1999) 101–135; DOI: 10.1210/edrv.20.2.0361.10.1210/edrv.20.2.0361Search in Google Scholar

15. G. E. Billman, The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy, Pharmacol. Ther. 120 (2008) 54–70; DOI: 10.1016/j.pharmthera.2008.07.004.10.1016/j.pharmthera.2008.07.004Search in Google Scholar

16. S. Isomoto and Y. Kurachi, [Molecular and biophysical aspects of potassium channels], Nihon Rinsho. (Jpn. J. Clin. Med.) 54 (1996) 660–666.Search in Google Scholar

17. J. Bryan and L. Aguilar-Bryan, Sulfonylurea receptors: ABC transporters that regulate ATP-sensitive K(+) channels, Biochim. Biophys. Acta1461 (1999) 285–303; DOI: 10.1016/S0005-2736(99)00164-9.10.1016/S0005-2736(99)00164-9Search in Google Scholar

18. N. Inagaki and S. Seino, ATP-sensitive potassium channels: structures, functions, and pathophysiology, Jpn. J. Physiol. 48 (1998) 397–412; DOI: 10.2170/jjphysiol.48.397.10.2170/jjphysiol.48.39710021494Search in Google Scholar

19. M. Matsuo, K. Tanabe, N. Kioka, T. Amachi and K. Ueda, Different binding properties and affinities for ATP and ADP among sulfonylurea receptor subtypes, SUR1, SUR2A, and SUR2B, J. Biol. Chem. 275 (2000) 28757–28763; DOI: 10.1074/jbc.M004818200.10.1074/jbc.M00481820010893240Search in Google Scholar

20. M. Dean, A. Rzhetsky and R. Allikmets, The human ATP-binding cassette (ABC) transporter superfamily, Genome Res. 11 (2001) 1156–1166; DOI: 10.1101/gr.184901.10.1101/gr.18490111435397Search in Google Scholar

21. L. Aguilar-Bryan, J. P. Clement IV, G. Gonzalez, K. Kunjilwar, A. Babenko and J. Bryan, Toward understanding the assembly and structure of KATP channels, Physiol. Rev. 78 (1998) 227–245.10.1152/physrev.1998.78.1.2279457174Search in Google Scholar

22. B. G. Gabrielsson, A. C. Karlsson, M. Lonn, L. E. Olofsson, J. M. Johansson, J. S. Torgerson, L. Sjostrom, B. Carlsson, S. Eden and L. M. Carlsson, Molecular characterization of a local sulfonylurea system in human adipose tissue, Mol. Cell. Biochem. 258 (2004) 65–71; DOI: 10.1023/B:MCBI.0000012837.11847.c8.10.1023/B:MCBI.0000012837.11847.c8Search in Google Scholar

23. C. F. Higgins, ABC transporters: physiology, structure and mechanism-an overview, Res. Microbiol. 152 (2001) 205–210.Search in Google Scholar

24. J. E. Walker, M. Saraste, M. J. Runswick and N. J. Gay, Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1 (1982) 945–951.10.1002/j.1460-2075.1982.tb01276.x5531406329717Search in Google Scholar

25. R. Mannhold, KATP channel openers: structure-activity relationships and therapeutic potential, Med. Res. Rev. 24 (2004) 213–266; DOI: 10.1002/med.10060.10.1002/med.10060Search in Google Scholar

26. J. P. Clement IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan and J. Bryan, Association and stoichiometry of K(ATP) channel subunits, Neuron18 (1997) 827–838; DOI: 10.1016/S0896-6273(00)80321-9.10.1016/S0896-6273(00)80321-9Search in Google Scholar

27. D. Enkvetchakul, G. Loussouarn, E. Makhina and C. G. Nichols, ATP interaction with the open state of the K(ATP) channel, Biophys. J. 80 (2001) 719–728; DOI: 10.1016/S0006-3495(01)76051-1.10.1016/S0006-3495(01)76051-1Search in Google Scholar

28. M. A. Burke, R. K. Mutharasan and H. Ardehali, The sulfonylurea receptor, an atypical ATP-bin ding cassette protein, and its regulation of the KATP channel, Circ. Res. 102 (2008) 164–176; DOI: 10.1161/CIRCRESAHA.107.165324.10.1161/CIRCRESAHA.107.165324Search in Google Scholar

29. F. M. Ashcroft and F. M. Gribble, Correlating structure and function in ATP-sensitive K+ channels, Trends Neurosci. 21 (1998) 288–294; DOI: 10.1016/S0166-2236(98)01225-9.10.1016/S0166-2236(98)01225-9Search in Google Scholar

30. S. Seino, Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review, J. Diabetes Compl. 17 (2003) 2–5; DOI: 10.1016/S1056-8727(02)00274-X.10.1016/S1056-8727(02)00274-XSearch in Google Scholar

31. S. Sattiraju, S. Reyes, G. C. Kane and A. Terzic, K(ATP) channel pharmacogenomics: from bench to bedside, Clin. Pharmacol. Ther. 83 (2008) 354–357; DOI: 10.1038/sj.clpt.6100378.10.1038/sj.clpt.6100378271988817957187Search in Google Scholar

32. K. Hussain and K. E. Cosgrove, From congenital hyperinsulinism to diabetes mellitus: the role of pancreatic beta-cell KATP channels, Pediatr. Diabetes6 (2005) 103–113; DOI: 10.1111/j.1399-543X.2005.00109.x.10.1111/j.1399-543X.2005.00109.x15963039Search in Google Scholar

33. N. Deutsch, T. S. Klitzner, S. T. Lamp and J. N. Weiss, Activation of cardiac ATP-sensitive K+ current during hypoxia: correlation with tissue ATP levels, Am. J. Physiol. 261 (1991) H671-6.Search in Google Scholar

34. Y. G. Kwak, S. K. Park, U. H. Kim, M. K. Han, J. S. Eun, K. P. Cho and S. W. Chae, Intracellular ADP-ribose inhibits ATP-sensitive K+ channels in rat ventricular myocytes, Am. J. Physiol. 271 (1996) C464-8.10.1152/ajpcell.1996.271.2.C4648769984Search in Google Scholar

35. H. Yokoshiki, M. Sunagawa, T. Seki and N. Sperelakis, ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells, Am. J. Physiol. 274 (1998) C25–C37.10.1152/ajpcell.1998.274.1.C259458709Search in Google Scholar

36. J. E. Brayden, Functional roles of KATP channels in vascular smooth muscle, Clin. Exp. Pharmacol. Physiol. 29 (2002) 312–316; DOI: 10.1046/j.1440-1681.2002.03650.x.10.1046/j.1440-1681.2002.03650.xSearch in Google Scholar

37. M. Yamada, S. Isomoto, S. Matsumoto, C. Kondo, T. Shindo, Y. Horio and Y. Kurachi, Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel, J. Physiol. 499 (1997) 715–20; DOI: 10.1113/jphysiol.1997.sp021963.10.1113/jphysiol.1997.sp021963Search in Google Scholar

38. J. Roper and F. M. Ashcroft, Metabolic inhibition and low internal ATP activate K-ATP channels in rat dopaminergic substantia nigra neurones, Pflugers Arch. 430 (1995) 44–54; DOI: 10.1007/BF00373838.10.1007/BF00373838Search in Google Scholar

39. I. M. Stanford and M. G. Lacey, Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata, Neuroscience74 (1996) 499–509; DOI: 10.1016/0306-4522(96)00151-0.10.1016/0306-4522(96)00151-0Search in Google Scholar

40. M. L. Ashford, P. R. Boden and J. M. Treherne, Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K+ channels, Br. J. Pharmacol. 101 (1990) 531–540; DOI: 10.1111/j.1476-5381.1990.tb14116.x.10.1111/j.1476-5381.1990.tb14116.xSearch in Google Scholar

41. M. Chien, I. Morozova, S. Shi, H. Sheng, J. Chen, S. M. Gomez, G. Asamani, K. Hill, J. Nuara, M. Feder, J. Rineer, J. J. Greenberg, V. Steshenko, S. H. Park, B. Zhao, E. Teplitskaya, J. R. Edwards, S. Pampou, A. Georghiou, I. C. Chou, W. Iannuccilli, M. E. Ulz, D. H. Kim, A. Geringer-Sameth, C. Goldsberry, P. Morozov, S. G. Fischer, G. Segal, X. Qu, A. Rzhetsky, P. Zhang, E. Cayanis, P. J. De Jong, J. Ju, S. Kalachikov, H. A. Shuman and J. J. Russo, The genomic sequence of the accidental pathogen Legionella pneumophila, Science305 (2004) 1966–1968; DOI: 10.1126/science.1099776.10.1126/science.1099776Search in Google Scholar

42. K. Yamada and N. Inagaki, ATP-sensitive K(+) channels in the brain: sensors of hypoxic conditions, News Physiol. Sci. 17 (2002) 127–30.Search in Google Scholar

43. N. W. Davies, Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons, Nature343 (1990) 375–377; DOI: 10.1038/343375a0.10.1038/343375a0Search in Google Scholar

44. J. J. Nielsen, M. Kristensen, Y. Hellsten, J. Bangsbo and C. Juel, Localization and function of ATP-sensitive potassium channels in human skeletal muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol. 284 (2003) R558-R63; DOI: 10.1152/ajpregu.00303.2002.10.1152/ajpregu.00303.2002Search in Google Scholar

45. S. M. Gopalakrishnan, C. Chen and M. F. Lokhandwala, Identification of alpha 1-adrenoceptor subtypes in rat renal proximal tubules, Eur. J. Pharmacol. 250 (1993) 469–472; DOI: 10.1016/0014-2999(93)90036-H.10.1016/0014-2999(93)90036-HSearch in Google Scholar

46. A. P. Babenko, L. Aguilar-Bryan and J. Bryan, A view of sur/KIR6.X, KATP channels, Annu. Rev. Physiol. 60 (1998) 667–687; DOI: 10.1146/annurev.physiol.60.1.667.10.1146/annurev.physiol.60.1.6679558481Search in Google Scholar

47. S. Seino, ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies, Annu. Rev. Physiol. 61 (1999) 337–362; DOI: 10.1146/annurev.physiol.61.1.337.10.1146/annurev.physiol.61.1.337Search in Google Scholar

48. N. Inagaki, T. Gonoi, J. P. Clement IV, N. Namba, J. Inazawa, G. Gonzalez, L. Aguilar-Bryan, S. Seino and J. Bryan, Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor, Science270 (1995) 1166–1170; DOI: 10.1126/science.270.5239.1166.10.1126/science.270.5239.1166Search in Google Scholar

49. S. Isomoto, C. Kondo, M. Yamada, S. Matsumoto, O. Higashiguchi, Y. Horio, Y. Matsuzawa and Y. Kurachi, A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel, J. Biol. Chem. 271 (1996) 24321–24324; DOI: 10.1074/jbc.271.40.24321.10.1074/jbc.271.40.24321Search in Google Scholar

50. P. Proks, F. Reimann, N. Green, F. Gribble and F. Ashcroft, Sulfonylurea stimulation of insulin secretion, Diabetes51 (2002) S368–S376; DOI: 10.2337/diabetes.51.2007.S368.10.2337/diabetes.51.2007.S368Search in Google Scholar

51. F. M. Gribble and F. Reimann, Pharmacological modulation of K(ATP) channels, Biochem. Soc. Trans. 30 (2002) 333–339; DOI: 10.1042/bst0300333.10.1042/bst0300333Search in Google Scholar

52. T. Hamaguchi, T. Hirose, H. Asakawa, Y. Itoh, K. Kamado, K. Tokunaga, K. Tomita, H. Masuda, N. Watanabe and M. Namba, Efficacy of glimepiride in type 2 diabetic patients treated with glibenclamide, Diabetes Res. Clin. Pract. 66 (2004) S129–S132; DOI: 10.1016/j.diabres.2003.12.012.10.1016/j.diabres.2003.12.012Search in Google Scholar

53. N. C. Sturgess, M. L. Ashford, D. L. Cook and C. N. Hales, The sulphonylurea receptor may be an ATP-sensitive potassium channel, Lancet326 (1985) 474–475; DOI: 10.1016/S0140-6736(85)90403-9.10.1016/S0140-6736(85)90403-9Search in Google Scholar

54. F. M. Gribble, S. J. Tucker and F. M. Ashcroft, The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation, J. Physiol. 504 (1997) 35–45; DOI: 10.1111/j.1469-7793.1997.00035.x.10.1111/j.1469-7793.1997.00035.x11599339350615Search in Google Scholar

55. F. M. Gribble and F. M. Ashcroft, Differential sensitivity of beta-cell and extrapancreatic K(ATP) channels to gliclazide, Diabetologia42 (1999) 845–848; DOI: 10.1007/s001250051236.10.1007/s00125005123610440127Search in Google Scholar

56. F. Reimann, P. Proks and F. M. Ashcroft, Effects of mitiglinide (S 21403) on Kir6.2/SUR1, Kir6.2/SUR2A and Kir6.2/SUR2B types of ATP-sensitive potassium channel, Br. J. Pharmacol. 132 (2001) 1542–1548; DOI: 10.1038/sj.bjp.0703962.10.1038/sj.bjp.0703962157269711264248Search in Google Scholar

57. Y. Sunaga, T. Gonoi, T. Shibasaki, K. Ichikawa, H. Kusama, H. Yano and S. Seino, The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide, Eur. J. Pharmacol. 431 (2001) 119–125; DOI: 10.1016/S0014-2999(01)01412-1.10.1016/S0014-2999(01)01412-1Search in Google Scholar

58. F. M. Ashcroft and F. M. Gribble, Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels, J. Diabetes Compl. 14 (2000) 192–196; DOI: 10.1016/S1056-8727(00)00081-7.10.1016/S1056-8727(00)00081-7Search in Google Scholar

59. S. Hu, S. Wang and B. E. Dunning, Tissue selectivity of antidiabetic agent nateglinide: study on cardiovascular and beta-cell K(ATP) channels, J. Pharmacol. Exp. Ther. 291 (1999) 1372–1379.Search in Google Scholar

60. A. Melander, Kinetics-effect relations of insulin-releasing drugs in patients with type 2 diabetes: brief overview, Diabetes53 (2004) S151–S155; DOI: 10.2337/diabetes.53.suppl_3.S151.10.2337/diabetes.53.suppl_3.S151Search in Google Scholar

61. R. I. Shorr, W. A. Ray, J. R. Daugherty and M. R. Griffin, Individual sulfonylureas and serious hypoglycemia in older people, J. Am. Geriatr. Soc. 44 (1996) 751–755; DOI: 10.1111/j.1532-5415.1996.tb03729.x.10.1111/j.1532-5415.1996.tb03729.xSearch in Google Scholar

62. A. Jonsson, T. Rydberg, G. Ekberg, B. Hallengren and A. Melander, Slow elimination of glyburide in NIDDM subjects, Diabetes Care17 (1994) 142–145; DOI: 10.2337/diacare.17.2.142.10.2337/diacare.17.2.142Search in Google Scholar

63. A. Holstein, A. Plaschke and E. H. Egberts, Lower incidence of severe hypoglycaemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide, Diabetes Metab. Res. Rev. 17 (2001) 467–473; DOI: 10.1002/dmrr.235.10.1002/dmrr.235Search in Google Scholar

64. A. Basit, M. Riaz and A. Fawwad, Glimepiride: evidence-based facts, trends, and observations, Vasc. Health Risk Manag. 8 (2012) 463–472; DOI: 10.2147/HIV.S33194.Search in Google Scholar

65. J. A. Hirst, A. J. Farmer, A. Dyar, T. W. Lung and R. J. Stevens, Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis, Diabetologia56 (2013) 973–984; DOI: 10.1007/s00125-013-2856-6.10.1007/s00125-013-2856-6Search in Google Scholar

66. K. Kaku, Y. Inoue and T. Kaneko, Extrapancreatic effects of sulfonylurea drugs, Diabetes Res. Clin. Pract. 28 (1995) S105–S108; DOI: 10.1016/0168-8227(95)01078-R.10.1016/0168-8227(95)01078-RSearch in Google Scholar

67. A. Terzic, A. Jahangir and Y. Kurachi, Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs, Am. J. Physiol. 269 (1995) C525–C545.10.1152/ajpcell.1995.269.3.C5257573382Search in Google Scholar

68. J. P. Arena and R. S. Kass, Activation of ATP-sensitive K channels in heart cells by pinacidil: dependence on ATP, Am. J. Physiol. 257 (1989) H2092–2096.Search in Google Scholar

69. G. Edwards, T. Ibbotson and A. H. Weston, Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier, Br. J. Pharmacol. 110 (1993) 1037–1048; DOI: 10.1111/j.1476-5381.1993.tb13918.x.10.1111/j.1476-5381.1993.tb13918.x21758028298792Search in Google Scholar

70. M. Schwanstecher, C. Sieverding, H. Dorschner, I. Gross, L. Aguilar-Bryan, C. Schwanstecher and J. Bryan, Potassium channel openers require ATP to bind to and act through sulfonylurea receptors, EMBO J. 17 (1998) 5529–5535; DOI: 10.1093/emboj/17.19.5529.10.1093/emboj/17.19.5529Search in Google Scholar

71. S. Shyng, T. Ferrigni and C. G. Nichols, Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor, J. Gen. Physiol. 110 (1997) 643–654; DOI: 10.1085/jgp.110.6.643.10.1085/jgp.110.6.643Search in Google Scholar

72. F. M. Gribble, F. Reimann, R. Ashfield and F. M. Ashcroft, Nucleotide modulation of pinacidil stimulation of the cloned K(ATP) channel Kir6.2/SUR2A, Mol. Pharmacol. 57 (2000) 1256–1261.Search in Google Scholar

73. C. Moreau, A. L. Prost, R. Derand and M. Vivaudou, SUR, ABC proteins targeted by KATP channel openers, J. Mol. Cell Cardiol. 38 (2005) 951–963; DOI: 10.1016/j.yjmcc.2004.11.030.10.1016/j.yjmcc.2004.11.030Search in Google Scholar

74. A. P. Babenko, G. Gonzalez and J. Bryan, Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers, J. Biol. Chem. 275 (2000) 717–720; DOI: 10.1074/jbc.275.2.717.10.1074/jbc.275.2.717Search in Google Scholar

75. I. Uhde, A. Toman, I. Gross, C. Schwanstecher and M. Schwanstecher, Identification of the potassium channel opener site on sulfonylurea receptors, J. Biol. Chem. 274 (1999) 28079–28082; DOI: 10.1074/jbc.274.40.28079.10.1074/jbc.274.40.28079Search in Google Scholar

76. G. Edwards and A. H. Weston, Potassium channel openers and vascular smooth muscle relaxation, Pharmacol. Ther. 48 (1990) 237–258; DOI: 10.1016/0163-7258(90)90082-D.10.1016/0163-7258(90)90082-DSearch in Google Scholar

77. A. H. Weston, J. Longmore, D. T. Newgreen, G. Edwards, K. M. Bray and S. Duty, The potassium channel openers: a new class of vasorelaxants, Blood Vessels. 27 (1990) 306–313; DOI 10.1159/000158823.Search in Google Scholar

78. J. C. Clapham, In Vivo Vascular Effects of Potassium Channel Activation in Isolated Blood Vessels, in Potassium Channels and Their Modulators (Ed. J. M. Evans), 1st ed., Taylor & Francis, London 1996, pp. 448.Search in Google Scholar

79. M. Burian, M. Piske, D. Petkovic and V. Mitrovic, Lack of anti-ischemic efficacy of the potassium channel opener bimakalim in patients with stable angina pectoris, Cardiovasc. Drugs Ther. 18 (2004) 37–46; DOI: 10.1023/B:CARD.0000025754.08942.03.10.1023/B:CARD.0000025754.08942.03Search in Google Scholar

80. H. Ueda, Y. Nakayama, K. Tsumura, K. Yoshimaru, T. Hayashi and J. Yoshikawa, Intravenous nicorandil can reduce the occurrence of ventricular fibrillation and QT dispersion in patients with successful coronary angioplasty in acute myocardial infarction, Can. J. Cardiol. 20 (2004) 625–629.Search in Google Scholar

81. I. S. Group, Effect of nicorandil on coronary events in patients with stable angina: the impact of nicorandil in angina (IONA) randomised trial, Lancet359 (2002) 1269–1275; DOI: 10.1016/S0140-6736(02)08265-X.10.1016/S0140-6736(02)08265-XSearch in Google Scholar

82. D. J. Milligan and A. M. Fields, Levosimendan: calcium sensitizer and inodilator, Anesthesiol. Clin. 28 (2010) 753–760; DOI: 10.1016/j.anclin.2010.08.003.10.1016/j.anclin.2010.08.003Search in Google Scholar

83. F. Follath, J. G. F. Cleland, H. Just, J. G. Y. Papp, H. Scholz, K. Peuhkurinen, V. P. Harjola, V. Mitrovic, M. Abdalla, E.-P. Sandell and L. Lehtonen, for the Steering Committee and Investigators of the Levosimendan Infusion versus Dobutamine (LIDO) Study, Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial, Lancet360 (2002) 196–202; DOI: 10.1016/S0140-6736(02)09455-2.10.1016/S0140-6736(02)09455-2Search in Google Scholar

84. V. S. Moiseyev, P. Poder, N. Andrejevs, M. Y. Ruda, A. P. Golikov, L. B. Lazebnik, Z. D. Kobalava, L. A. Lehtonen, T. Laine, M. S. Nieminen, K. I. Lie and RUSSLAN Study Investigators, Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSS-LAN), Eur. Heart J. 23 (2002) 1422–1432.10.1053/euhj.2001.315812208222Search in Google Scholar

eISSN:
1846-9558
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Pharmacy, other