Acceso abierto

Tumor Blood Vessels and Vasculogenic Mimicry – Current Knowledge and Searching for New Cellular/Molecular Targets of Anti-Angiogenic Therapy


Cite

[1] Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opinion Biotech 2007; 18: 460-466.10.1016/j.copbio.2007.10.007Search in Google Scholar

[2] Alameddine RS, Hamich L, Shamseddine A. From sprouting angiogenesis to erythrocytes generation by cancer stem cells: evolving concepts in tumor microcirculation. BioMed Res Int 2014; 2014: doi 10.1155/2014/986768.10.1155/2014/986768Search in Google Scholar

[3] Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circul Res 1999; 85: 221-228.10.1161/01.RES.85.3.221Search in Google Scholar

[4] Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 2014; 4: doi: 10.3389/fonc.2014.00062.Search in Google Scholar

[5] Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14: 53-65.10.1016/0026-2862(77)90141-8Search in Google Scholar

[6] Baeten C, Hillen F., Pauwels P, de Bruine A., Baeten C. Prognostic role of vasculogenic mimicry in colorectal cancer. Dis Colon Rectum 2009; 52: 2028-2035.10.1007/DCR.0b013e3181beb4ff19934926Search in Google Scholar

[7] Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, Zhong B, de Boer CJ, Tabernero J, Calvo E. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Targ Oncol 2015; 10: 111-123.10.1007/s11523-014-0320-224928772Search in Google Scholar

[8] Cao Z, Bao M, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: A systemic review and meta-analysis. Eur J Cancer 2013; 49: 3914-3923.10.1016/j.ejca.2013.07.14823992642Search in Google Scholar

[9] Chang Y, Di Tomaso E, McDonald D, Jones R, Jain R, Munn L. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. PNAS 2000; 97: 14608-14613.10.1073/pnas.97.26.146081896611121063Search in Google Scholar

[10] Chen L, Zhang S, Li X, Sun B, Zhao X, Zhang D, Zhao S. A pilot study of vasculogenic mimicry immunohistochemical expression in intraocular melanoma model. Oncol Reports 2009; 21: 989-994.Search in Google Scholar

[11] Chen X, Fang J, Wang S, Liu H, Du X, Chen J, Li X, Yang Y, Zhang B, Zhang W. A new mosaic pattern in glioma vascularization: exogenous endothelial progenitor cells integrating into the vessel containing tumor-derived endothelial cells. Oncotarget 2014; 5: 1955-1968.10.18632/oncotarget.1885403910824722469Search in Google Scholar

[12] Cheng L, Huang Z, Zhou W, Wu q, D S, Liu Jk, F X, S A, Mao Y, L J, Min W, McLendon R, Rich J, Bao S. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 2013; 153: 139-152.10.1016/j.cell.2013.02.021363826323540695Search in Google Scholar

[13] Chiron M Bagley RG, Pollard J, Mankoo PK, Henry Ch, Vincent L, Geslin C, Baltes N, Bergstrom DA. Differential antitumor activity of Aflibercept and Bevacizumab in patient-derived models of colorectal cancer. Mol Cancer Ther 2014; 13: 1636-1644.10.1158/1535-7163.MCT-13-075324688047Search in Google Scholar

[14] Chung AS, Lee J, Ferrara N. Targeting the tumor vasculature: insights from physiological angiogenesis. Nature Rev Cancer 2010; 10: 505-514.10.1038/nrc286820574450Search in Google Scholar

[15] Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, Clouthier SG, Wicha MS. Anti-angiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. PNAS 2012; 109: 2784-2789.10.1073/pnas.1018866109328697422308314Search in Google Scholar

[16] Cooke V, LeBleu V, Keskin D, Khan Z, O`Conell J, Teng Y, Duncan M, Xie L, Maeda G, Vong S, Sugimoto H, Rocha R, Damascena A, Brentani R, Kalluri R. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by Met signaling pathway. Cancer Cell 2012; 21: 66-81.10.1016/j.ccr.2011.11.024399952222264789Search in Google Scholar

[17] Croci DO, Rabinovich GA. Linking tumor hypoxia with VEGFR2 signaling and compensatory angiogenesis. Oncol Immunol 2014; 3: e29380.10.4161/onci.29380412538025114834Search in Google Scholar

[18] De Falco S. Antiangiogenesis therapy: un update after the first dacade. Korean J Intern Med 2014; 29: 1-11.10.3904/kjim.2014.29.1.1393237824574826Search in Google Scholar

[19] De la Puente P, Muz B, Azab AK. Cell traffiking of endothelial cells in tumor progression. Clin Cancer Res 2013; 19: 3360-3368.10.1158/1078-0432.CCR-13-046223665736Search in Google Scholar

[20] Deryugina E, Quigley J. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrastin, overlapping and compensatory functions. Biochim Biophys Acta 2010; 1803: 103-120.10.1016/j.bbamcr.2009.09.017282405519800930Search in Google Scholar

[21] Di X, Zhang G, Zhang Y, Takeda K, Rivera-Rosado LA, Zhang B. Accumulation of autophagosomes in breast cancer cells induces TRAIL resistance through downregulation of surface expression of death receptors 4 and 5. Oncotarget 2013; 4: 1349-1364.10.18632/oncotarget.1174382453523988408Search in Google Scholar

[22] D`Incalci M, Badri N, Galmarini CM, Allavena P. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br J Cancer 2014; 111: 646-650.10.1038/bjc.2014.149Search in Google Scholar

[23] Du J, Sun B, Zhao X, Gu Q, Dong X, Mo J, Sun T, Wang J, Sun R, Liu Y. Hypoxia promotes vasculogenic mimicry formation by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol 2014; 133: 575-583.10.1016/j.ygyno.2014.02.034Search in Google Scholar

[24] Dudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med 2012; 2: a006536.10.1101/cshperspect.a006536Search in Google Scholar

[25] Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 2002; 20: 4368-4380.10.1200/JCO.2002.10.088Search in Google Scholar

[26] El Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, Marie Y, Mokhtari K, Thomas JL, Eichmann A, Delattre JY, Maniotis AJ, Sanson M. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 2010; 133: 973-982.10.1093/brain/awq044Search in Google Scholar

[27] El Hallani S, Colin C, El Houfi Y, Idbaih A, Boisselier B, Marie Y, Revassard Ph, Labussiere M, Mokhtari K, Thomas J-L, Delattre J-Y, Eichmann A, Sanson M. Tumor and endothelial cell hybrids participate in glioblastoma vasculature. BioMed Res Int 2014; 2014: doi.org/10.1155/2014/827327.10.1155/2014/827327Search in Google Scholar

[28] Fan YL, Zheng M, Tang YL, Liang XH. A new perspecitves of vasculogenic mimicry: EMT and cancer sten cells (Review). Oncol Lett 2013; 6: 1174-1180.10.3892/ol.2013.1555Search in Google Scholar

[29] Folkman J, Long DM, Becker FF. Growth and metastasis of tumor in organ culture. Cancer 1963; 16: 453-467.10.1002/1097-0142(196304)16:4<453::AID-CNCR2820160407>3.0.CO;2-YSearch in Google Scholar

[30] Folkman J. Tumor angiogenesis. Therapeutic implications. N Eng J Med 1971; 285: 1182-1186.10.1056/NEJM197111182852108Search in Google Scholar

[31] Gacche RN. Compensatory angiogenesis and tumor refractoriness. Oncogenesis 2015; 4: e153, doi: 10.1038/oncsis.2015.14Search in Google Scholar

[32] Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding M, Lee WM. Tumor vessel devel opment and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 2003; 162: 183-193.10.1016/S0002-9440(10)63809-6Search in Google Scholar

[33] Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161: 1163-1177.10.1083/jcb.200302047217299912810700Search in Google Scholar

[34] Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Nerini IF, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anchini A, Mantovani A, D`Incalci MD, Allavena P. Role of macrophage targeting in the antitumor activity of Trabectedin. Cancer Cell 2013; 23: 249-262.10.1016/j.ccr.2013.01.00823410977Search in Google Scholar

[35] Giuliano S, Pages G. Mechanisms of resistance to anti-angiogenesis therapies. Biochimie 2013; 95: 1110-1119.10.1016/j.biochi.2013.03.00223507428Search in Google Scholar

[36] Hendriksen EM, Span PN, Schuuring J, Peters JPW, Sweep FC, van der Kogel AJ, Bussink J. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc Res 2009; 77: 96-103.10.1016/j.mvr.2008.11.00219118564Search in Google Scholar

[37] Hendrix MJ, Seftor EA, Seftor RE, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: novel targeting opportunity in melanoma. Pharmacol Therapeut 2016; dx.doi.org/10.1016j. pharmathera.2016.01.006.Search in Google Scholar

[38] Hida K, Ohga N, Akiyama K, Maishi N, Hida Y. Heterogeneity of tumor endothelial cells. Cancer Sci 2013; 104: 1391-1395.10.1111/cas.12251765424423930621Search in Google Scholar

[39] Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metast Rev 2007; 26: 489-502.10.1007/s10555-007-9094-7279785617717633Search in Google Scholar

[40] Hu YL, Delay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, Aghi MK. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to anti-angiogenic treatment in glioblastoma. Cancer Res 2012; 72: 1773-1783.10.1158/0008-5472.CAN-11-3831331986922447568Search in Google Scholar

[41] Huang M, Ke Y, Sun X, Yu L, Yang Z, Zhang Y, Du M, Wang J, Liu X, Huang S. Mammalian target of rapamycin signaling is involved in the vasculogenic mimicry of glioma via hypoxia-inducible factor-1α. Oncol Rep 2014; 32: 1973-1980.10.3892/or.2014.345425175735Search in Google Scholar

[42] Janic B, Arbab AS. The role and therapeutic potential of endothelial progenitor cells in tumor neovascularization. Scient World J 2010; 10: 1088-1099.10.1100/tsw.2010.100288992620563532Search in Google Scholar

[43] Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, malina S, Sochanik A, Szala S. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 2013; 20: 262-273.10.1038/gt.2012.2822495576Search in Google Scholar

[44] Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N, Czapla J, Matuszczak S, Szala S. Combined tumor cell-based vaccination and interleukin-12 gene therapy polarizes the tumor microenvironment in mice. Arch Immunol Ther Exp 2015; doi:10.1007/s00005-015-0337-y.Search in Google Scholar

[45] Kieda C. Heterogeneity of endothelial cells - role in vessel specialization and cooperation in vasculogenic mimicry. Post Biochem 2013; 59: 372-378.Search in Google Scholar

[46] Lai CY, Schwartz BE, Hsu MY. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 2012; 72: 511-5118.10.1158/0008-5472.CAN-12-0624346365422865455Search in Google Scholar

[47] Lee SH, Mizutani N, Mizutani M, Luo Y, Zhou H, Kaplan Ch, Kim SW, Xiang R, Reisfeld RA. Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immuno Immunother 2006; 55: 1565-1574.10.1007/s00262-006-0155-516565828Search in Google Scholar

[48] Li S, Kennedy M, Payne S, Kennedy K, Seewaldt VL, Pizzo SV, Bachelder RE. Model of tumor dormancy/recurrence after short-term chemotherapy. PLOS One 2014; 9: e98021.10.1371/journal.pone.0098021402826924845582Search in Google Scholar

[49] Lieu Ch, Heymach J, Overman M, Tran H, Kopetz S. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res. 2011; 17: 6130-6139.Search in Google Scholar

[50] Liu R, Yang K, Meng Ch, Zhang Z, Xu Y. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer. Cancer Biol Therapy 2012; 13: 527-533.10.4161/cbt.1960222407030Search in Google Scholar

[51] Liu T, Sun B, Zhao X, Li Y, Zhao X, Liu Y, Yao Z, Gu Q, Dong X, Shao B, Lin X, Liu F, An J. USP44+ cancer stem cells subclones contributed to breast cancer aggressiveness by promoting vasculogenic mimicry. Mol Cancer Therapeut 2015; doi:10.1158/1535-7163 MCT 15-01114-T.Search in Google Scholar

[52] Liu Z, Sun B, Qi L, Li H, Gao J, Leng X. Zinc finger E-box binding homeobox 1 promotes vasculogenic mimicry in colorectal cancer through induction of epithelial-to-mesenchymal transition. Cancer Sci 2012; 103: 813-820.10.1111/j.1349-7006.2011.02199.x765936622212097Search in Google Scholar

[53] Loges S, Schmidt T, Carmeliet P. Mechanism of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes & Cancer 2010; 1: 12-25.10.1177/1947601909356574309217621779425Search in Google Scholar

[54] Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills GB, Liao WS, Bast RC. The tumor suppressor gene ARH1 regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 2008; 118: 3917-3929.Search in Google Scholar

[55] Lu X, Li X, Shen F, Xiao W. Vasculogenic mimicry in non-small cell lung cancer and its relationship with tumor stage. Chinese-German J Clin Oncol 2014; 13: 207-211.Search in Google Scholar

[56] Major AG, Pitty LP, Farah CS. Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cell Int 2013; 13: doi.org/10.1155/2013/319489.10.1155/2013/319489360368423533441Search in Google Scholar

[57] Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe`er J, Trent JM, Meltzer PS, Hendrix MJ. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999; 155: 739-752.10.1016/S0002-9440(10)65173-5Search in Google Scholar

[58] Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 2015; 212: 435-445.10.1084/jem.20150295438728525753580Search in Google Scholar

[59] Marelli G, Allavena P, Erreni M. Tumor-associated macrophages, multi-tasking cells in the cancer landscape. Cancer Res Front 2015; 1: 149-161.10.17980/2015.149Search in Google Scholar

[60] Millimaggi D, Mari M, D`Ascenzo S, Giusti I, Pavan A, Dolo V. Vasculogenic mimicry of human ovarian cancer cells: role of CD147. Int J Oncol 2009; 35: 1423-1428.Search in Google Scholar

[61] Pardali E, van der Schaft Dw, Wiercinska E, Gorter A, Hogendoorn PC, Griffioen W, ten Dijke P. Critical role of endoglin in tumor plasticity of Ewing sarcoma and melanoma. Oncogene 2011; 30: 334-345.10.1038/onc.2010.41820856203Search in Google Scholar

[62] Paulis YW, Dinnes D, Soetekouw PM, Nelson PJ, Burdach S, Loewe RP, Tjan-Heijnen VC, von Luettichau I, Griffioen AW. Imatinib reduces the vasculogenic potential of plastic tumor cells. Curr Angiogenes 2012; 1: 64-71.10.2174/2211552811201010064Search in Google Scholar

[63] Qiao L, Liang N, Zhang J, Xie J, Liu F, Xu D, Yu X, Tian Y. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 2015; 19: 315-326.10.1111/jcmm.12496440760225598425Search in Google Scholar

[64] Qu B, Guo L, Ma J, Lv Y. Antiangiogenesis therapy might have the unintended effect of promoting tumor metastasis by inreasing an alternative circulatory system. Med Hypothes 2010; 74: 360-361.10.1016/j.mehy.2009.08.02019744799Search in Google Scholar

[65] Ribatti D, Crivelatt o E. “Sprouting angiogenesis”, a reappraisal. Develop Biol 2012; 372: 157-165.10.1016/j.ydbio.2012.09.01823031691Search in Google Scholar

[66] Ribatti D. Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis 2008; 11: 3-10.10.1007/s10456-008-9092-6226872318247146Search in Google Scholar

[67] Ribeiro AL, Okamoto OK. Combined effects of pericytes in the tumor microenvironment. Stem Cell Int 2015; 2015: doi: 10.1155/2015/868475.Search in Google Scholar

[68] Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R. Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010; 468: 824-828.10.1038/nature09557Search in Google Scholar

[69] Ricci V, Ronzoni M, Fabozzi T. Aflibercept a new target therapy in cancer treatment: a review. Crit Rev Oncol Hematol 2015; dx.doi.org/10.1016/j.critrevonc.2015.07.001.10.1016/j.critrevonc.2015.07.001Search in Google Scholar

[70] Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD, Spencer S, Adams BJ, Alvarez D, Seon BK, Theuer ChP, Leigh BR, Gordon MS. A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res 2012; doi:10.1158/1078-0432.CCR-12-0098.Search in Google Scholar

[71] Rosen LS, Gordon MS, Robert S, Matei DE. Endoglin for targeted cancer treatment. Cur Oncol Rep 2014; 16: doi 10.1007/s11912-013-0365-x10.1007/s11912-013-0365-xSearch in Google Scholar

[72] Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou Ch, Olmos D, Wang G, Tromp BJ, Puchalski TA, Balkwill F, Berns B, Seetharam S, de Bono JS, Tolcher AW. A first-in-human, first-in- -class, phase I study of Carlumab (CNTO888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 2013; 71: 1041-1050.10.1007/s00280-013-2099-8Search in Google Scholar

[73] Smolle E, Taucher V, Petru E, Haybaeck J. Targeted treatment of ovarian cancer - the multiple-kinase- inhibitor Sorafenib as a potential option. Anticancer Res 2014; 34: 1519-1530.Search in Google Scholar

[74] Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman R, Kesari S, Verma I. Transdifferentiation of glioblastoma cells into vascular endothelial cells. PNAS 2011; 108: 4274-4280.10.1073/pnas.1016030108Search in Google Scholar

[75] Soeda A. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 α. Oncogene 2009; 28: 3949-3959.10.1038/onc.2009.252Search in Google Scholar

[76] Sood A, Seftor EA, Fletcher MS, Gardner LM, Heidger PM, Buller RE, Seftor RE, Hendrix MJ. Molecular determinants of ovarian cancer plasticity. Am J Pathol 2001; 158: 1279-1288.10.1016/S0002-9440(10)64079-5Search in Google Scholar

[77] Sosa MS, Bragado P, Debnath J, Aguirre-Ghiso JA. Regulation of tumor cell dormancy by tissue microenvironment and autophagy. Adv Exp Med Biol 2013; 734: 73-89.10.1007/978-1-4614-1445-2_5365169523143976Search in Google Scholar

[78] Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis and cancer metastasis. Mol Cancer 2015; 14: doi 10.1186/s12943-015-0321-5.10.1186/s12943-015-0321-5434305325743109Search in Google Scholar

[79] Sun B, Zhang D, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 2007; 249: 188-197.10.1016/j.canlet.2006.08.01616997457Search in Google Scholar

[80] Sun H, Guo D, Su Y, Yu D, Wang Q, Wang T, Zhou Q, Zou Z. Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLOS One 2014; doi: 10.1371/journal.pone.0114246.Search in Google Scholar

[81] Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX. Expression and functional significance of TWIST-1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 2010; 51: 545-556.10.1002/hep.2331119957372Search in Google Scholar

[82] Tittarelli A, Guerrero I, Tempio F, Gleisner MA, Avalos I, Sabanegh S, Ortiz C, Michea L, Lopez MN, Mendoza-Naranjo A, Salazar-Onfray F. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity. Br J Cancer 2015; 113: 259-267.10.1038/bjc.2015.162450637826135897Search in Google Scholar

[83] Van Beijnum JR, Nowak-Śliwińska P, Huijbers EJ, Thijssen VL, Griffioen AW. The great escape; the hallmarks of resistance to anti-angiogenic therapy. Pharmacol Rev 2015; 67: 1-21.10.1124/pr.114.01021525769965Search in Google Scholar

[84] Wang L, Lin L. Chen X, Sun L, Liao Y, Huang N, Liao W. Metastasis-associated in colon cancer-1 promotes vasculogenic mimicry in gastric cancer by upregulating TWIST- 1/2. Oncotarget 2015; 6: 11492-11506.10.18632/oncotarget.3416448447125895023Search in Google Scholar

[85] Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligeman B, Leversha M, Brennan C, Tabar V. Glioblastoma stem-like cells give rise to tumor endothelium. Nature 2010; 468: 829-83310.1038/nature0962421102433Search in Google Scholar

[86] Wang WK, Chen MCh, Leong HF, Kuo YL, Kuo Chy, Lee ChH. Connexin 43 suppresses tumor angiogenesis by down-regulation of vascular endothelial growth factor via hypoxia induced factor -1α. Int J Mol Sci 2015; 16: 439-451.10.3390/ijms16010439430725525548899Search in Google Scholar

[87] Wang WK, Kuan YD, Kuo CY, Lee CH. Connexin 43 gene therapy delivered by polymer-modified Salmonella in murine tumor models. Polymers 2014; 6: 1119-1128.10.3390/polym6041119Search in Google Scholar

[88] Wong V, Chan PL, Bernabeu C, Law S, Wang LD, Li JL, Tsao SW, Srivastava G, Lung ML. Identification of an invasion and tumor-suppressing gene, endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Int J Cancer 2008; 123: 2816-2823.10.1002/ijc.2388218798555Search in Google Scholar

[89] Xu Y, Li Q, Li XY, Yang QY, Xu WW, Liu GL. Short-term anti-vascular endothelial growth factor treatment elicits vasculogenic mimicry formation of tumors to accelerate metastasis. J Exp Clin Cancer Res 2012; 31: 16.10.1186/1756-9966-31-16331084622357313Search in Google Scholar

[90] Yin T, He S, Shen G, Wang Y. HIF-1 dimerization inhibitor acriflavine enhances antitumor activity of sunitinib in breast cancer model. Oncol Res 2015; 22: 139-145.10.3727/096504014X13983417587366783842526168132Search in Google Scholar

[91] Zhang D, Sun B, Zhao X, Ma Y, Ji R, Gu Q, Dong X, Li J, Liu F, Jia X, Leng X, Zhang Ch, Sun R, Chi J. TWIST-1 expression induced by sunitinib accelerates tumor cell vasculogenic mimicry by increasing the population of CD133+ cells in triple-negative breast cancer. Mol Cancer 2014; 13: 207.10.1186/1476-4598-13-207416805125200065Search in Google Scholar

[92] Zhang L, Ding P, Lv H, Zhang D, Liu G, Yang Z, Li Y, Liu J, Zhang S. Number of polyploid giant cancer cells and expression of EZH2 are associated with VM formation and tumor grade in human ovarian tumor. BioMed Res Int 2014; 2014: doi: 10.1155/2014/903542.Search in Google Scholar

[93] Zhang S, Li M, Gu Y, Liu Z, Xu S, Cui Y, Sun B. Thalidomide influences growth and vasculogenic mimicry channel formation in melanoma. J Exp Clin Cancer Res 2008; 27: 60 (doi:10.1186/1756-9966-27-60).Search in Google Scholar

[94] Zhang S, Mercado-Uribe I, Liu J. Generation of erythroid cells from fibroblasts and cancer cells in vitro and in vivo. Cancer Lett 2013; 333: 205-212.10.1016/j.canlet.2013.01.037376078723376638Search in Google Scholar

[95] Zhao C, Yang H, Shi H, Wang X, Chen X, Yuan Y., Lin S, Wei Y. Distinct contributions of angiogenesis and vascular co-option during the initiation of primary microtumors and micrometastases. Carcinogenesis 2011; 32: 1143-1150.10.1093/carcin/bgr07621515914Search in Google Scholar

eISSN:
2080-2218
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biochemistry