Acerca de este artículo
Publicado en línea: 07 sept 2023
Páginas: 195 - 211
Recibido: 03 ene 2023
DOI: https://doi.org/10.14746/quageo-2023-0032
Palabras clave
© 2023 Joanna Pluto-Kossakowska et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 8.

Fig. 7.

Urban Atlas classes selected for the study_ These code names and colours have been used in the forth-coming presentation of results_
Class name | Sealed Level (SL) | Codename and colour on images | Name and colour of aggregated classes |
---|---|---|---|
Continuous urban fabric | >80% | ||
Discontinuous dense urban fabric | 50–80% | ||
Discontinuous medium density urban fabric | 30–50% | ||
Discontinuous low density urban fabric | 10–30% | ||
Discontinuous very low density urban fabric | <10% | ||
Isolated structures | |||
Port areas | |||
Industrial, commercial, public, military and private units | |||
Arable land (annual crops) | |||
Forests | |||
Pastures | |||
UA class borders |
Specification of the SAR data used in the study_
Sensor | Date | Band | Polarisation | Orbit | Mode | Spatial resolution after corrections and resampling |
---|---|---|---|---|---|---|
ICEYE | 19.04.2019 | X (3 cm) | VV | Ascending | SM | 2 m |
Sentinel-1 | 27.12.2018 | C (5 cm) | VH + VV | Descending | IW | 10 m |
Comparison of classification results in different images and different algorithms for discontinuous low and very low density urban fabric, both in low density urban area class; these representative examples visualise a general pattern_
Discontinuous low density urban fabric | ||
---|---|---|
orthophotomap | ||
Sentinel-1 | ICEYE | |
Random Forests | ||
Minimum Distance | ||
Discontinuous very low density urban fabric | ||
orthophotomap | ||
Sentinel-1 | ICEYE | |
Random Forests | ||
Minimum Distance |
Sentinel-1 image classification accuracy by RF (top) and MD (bottom) algorithms – both results after aggregation_
Class value | Vegetation | Dense urban | Low dens. urban | Industrial | Total | U_Accuracy | Kappa |
---|---|---|---|---|---|---|---|
RF classification | |||||||
Vegetation | 685 | 58 | 21 | 70 | 834 | 0.821 | 0 |
Dense urban | 29 | 140 | 5 | 162 | 336 | 0.417 | 0 |
Low dens. urban | 196 | 66 | 17 | 98 | 377 | 0.045 | 0 |
Industrial | 28 | 103 | 2 | 321 | 454 | 0.707 | 0 |
Total | 938 | 367 | 45 | 651 | 2001 | 0 | 0 |
P_Accuracy | 0.730 | 0.381 | 0.378 | 0.493 | 0 | 0.581 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0.398 | |
MD classification | |||||||
Vegetation | 747 | 63 | 21 | 57 | 888 | 0.841 | 0 |
Dense urban | 32 | 144 | 3 | 118 | 297 | 0.485 | 0 |
Low dens. urban | 141 | 56 | 21 | 114 | 332 | 0.063 | 0 |
Industrial | 18 | 104 | 0 | 362 | 484 | 0.748 | 0 |
Total | 938 | 367 | 45 | 651 | 2001 | 0 | 0 |
P_Accuracy | 0.796 | 0.392 | 0.467 | 0.556 | 0 | 0.637 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0.468 |
Comparison of classification results in different images and different algorithms for Continuous urban fabric class and discontinuous dense urban fabric, both in one dense urban area class; these representative examples visualise a general pattern_
Continuous urban fabric | ||
---|---|---|
orthophotomap | ||
Sentinel-1 | ICEYE | |
Random Forests | ||
Minimum Distance | ||
Discontinuous dense urban fabric | ||
orthophotomap | ||
Sentinel-1 | ICEYE | |
Random Forests | ||
Minimum Distance |