1. bookVolume 29 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Difficult to Treat Proteeae strains in high risk Romanian hospital departments

Published Online: 29 Jan 2021
Page range: 53 - 64
Received: 19 Oct 2020
Accepted: 11 Dec 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction: Resistance to first-line antibiotics of the Proteeae strains within the difficult-to-treat (DTR) phenotype is a cause of limitation of therapeutic options. The study aimed to characterize these strains, to identify the factors that influence their acquisition and the predictive factors for the patient’s evolution.

Material and methods: Between July 2017 and January 2019, 400 of Proteeae strains were isolated from samples of patients admitted to intensive care units (ICUs) and surgical wards of a university hospital in Romania. The identification and testing of antibiotic sensitivity was performed using the Vitek 2 Compact system. The DTR phenotype was defined as the resistance (or intermediate resistance) to all categories of β-lactams, carbapenems and fluoroquinolones.

Results: Out of 400 Proteeae strains, 21% were of the DTR type, most of them from the species Providencia stuartii and Proteus mirabilis, identified predominantly on the ICUs. The excess fatality in the DTR subsample compared to the non-DTR subsample was 16.37%. The multivariate analysis identified as independent risk factors: the number of antibiotics administered, the number of days of urinary catheterization, the presence of tracheostomy, nasogastric nutrition, respectively belonging to the species P. stuartii. The probabilities of survival were reduced by the presence of the central venous catheter (CVC), tracheostomy, by the increase of the number of hospitalization days respectively of the number of antibiotics administered.

Conclusion: The DTR phenotype in the case of Proteeae strains has been associated especially with the species P. stuartii, with invasive exogenous factors and with an increased fatality.

Keywords

1. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012 Mar;18(3):268–81. DOI: 10.1111/j.1469-0691.2011.03570.x10.1111/j.1469-0691.2011.03570.x21793988Search in Google Scholar

2. Kadri S, Adjemian J, Lai Y, Spaulding A, Ricotta E, Prevots D, et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin Infect Dis. 2018 Jul 23;67. DOI: 10.1093/cid/ciy37810.1093/cid/ciy378626017130052813Search in Google Scholar

3. Gajdács M, Bátori Z, Ábrók M, Lázár A, Burián K. Characterization of Resistance in Gram-Negative Uri-nary Isolates Using Existing and Novel Indicators of Clinical Relevance: A 10-Year Data Analysis. Life (Basel, Switzerland). 2020 Feb;10(2). DOI: 10.3390/life1002001610.3390/life10020016717516332054054Search in Google Scholar

4. McDonnell A, Rex JH, Goossens H, Bonten M, Fowler VGJ, Dane A. Efficient Delivery of Investigational Antibacterial Agents via Sustainable Clinical Trial Networks. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2016 Aug;63 Suppl 2(Suppl 2):S57–9. DOI: 10.1093/cid/ciw24410.1093/cid/ciw244496759227481955Search in Google Scholar

5. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016 Dec;66(12):5575–99. DOI: 10.1099/ijsem.0.00148510.1099/ijsem.0.00148527620848Search in Google Scholar

6. Gajdács M, Urbán E. Comparative Epidemiology and Resistance Trends of Proteae in Urinary Tract Infections of Inpatients and Outpatients: A 10-Year Retrospective Study. Antibiot (Basel, Switzerland). 2019 Jul;8(3). DOI: 10.3390/antibiotics803009110.3390/antibiotics8030091678386231373311Search in Google Scholar

7. Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol. 2020;11:256. DOI: 10.3389/fmicb.2020.0025610.3389/fmicb.2020.00256704675632153540Search in Google Scholar

8. Abdallah M, Balshi A. First literature review of carbapenem-resistant Providencia. New microbes new Infect. 2018 Sep;25:16–23. DOI: 10.1016/j.nmni.2018.05.00910.1016/j.nmni.2018.05.009603124129983987Search in Google Scholar

9. O’Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev. 2000 Oct;13(4):534–46. DOI: 10.1128/CMR.13.4.53410.1128/CMR.13.4.5348894711023955Search in Google Scholar

10. Tumbarello M, Citton R, Spanu T, Sanguinetti M, Romano L, Fadda G, et al. ESBL-producing multidrug-resistant Providencia stuartii infections in a university hospital. J Antimicrob Chemother. 2004 Feb;53(2):277–82. DOI: 10.1093/jac/dkh04710.1093/jac/dkh04714688041Search in Google Scholar

11. Tumbarello M, Trecarichi EM, Fiori B, Losito AR, D’Inzeo T, Campana L, et al. Multidrug-resistant Proteus mirabilis bloodstream infections: risk factors and outcomes. Antimicrob Agents Chemother. 2012 Jun;56(6):3224–31. DOI: 10.1128/AAC.05966-1110.1128/AAC.05966-11337081522450979Search in Google Scholar

12. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Intrinsic resistance and Unusual phenotypes V. 3.2 [Internet]. EUCAST Expert Rules. 2020. Available from: http://www.eucast.org/expert_rules_and_intrinsic_resistance/Search in Google Scholar

13. Karakonstantis S, Kritsotakis EI, Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection. 2020 Sep;1–17. DOI: 10.20944/preprints202006.0173. v1Search in Google Scholar

14. Lob S, Kazmierczak K, Stone G, Sahm DF. 680. In vitro Activity of Ceftazidime-Avibactam and Comparator Agents Against Pseudomonas aeruginosa from ICU and Non-ICU Wards Collected in Latin America and Globally as Part of the ATLAS Surveillance Program 2016–2017. Vol. 6, Open Forum Infectious Diseases. 2019. p. S310. DOI: 10.1093/ofid/ofz360.74810.1093/ofid/ofz360.748Search in Google Scholar

15. Armengol E, Asunción T, Vi-as M, Sierra JM. When Combined with Colistin, an Otherwise Ineffective Rifampicin-Linezolid Combination Becomes Active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Microorganisms. 2020 Jan;8(1). DOI: 10.3390/microorganisms801008610.3390/microorganisms8010086702333931936387Search in Google Scholar

16. Zhou Y-F, Liu P, Zhang C-J, Liao X-P, Sun J, Liu Y-H. Colistin Combined With Tigecycline: A Promising Alternative Strategy to Combat Escherichia coli Harboring bla (NDM-) (5) and mcr-1. Front Microbiol. 2019;10:2957. DOI: 10.3389/fmicb.2019.0295710.3389/fmicb.2019.02957696040431969868Search in Google Scholar

17. Jacoby GA. AmpC β-Lactamases. Clin Microbiol Rev [Internet]. 2009 Jan 1;22(1):161 LP - 182. Available from: http://cmr.asm.org/content/22/1/161.abstract DOI: 10.1128/CMR.00036-0810.1128/CMR.00036-08262063719136439Search in Google Scholar

18. Oikonomou O, Liakopoulos A, Phee LM, Betts J, Mevius D, Wareham DW. Providencia stuartii Isolates from Greece: Co-Carriage of Cephalosporin (blaSHV-5, blaVEB-1), Carbapenem (blaVIM-1), and Aminoglycoside (rmtB) Resistance Determinants by a Multi-drug-Resistant Outbreak Clone. Microb Drug Resist. 2016 Jul;22(5):379–86. DOI: 10.1089/mdr.2015.021510.1089/mdr.2015.021527380549Search in Google Scholar

19. Lee H-W, Kang H-Y, Shin K-S, Kim J. Multidrug-resistant Providencia isolates carrying blaPER-1, blaVIM-2, and armA. J Microbiol. 2007 Jul 1;45:272–4.Search in Google Scholar

20. Mahrouki S, Chihi H, Amel B, Moussa M, Belhadj O. First characterization of a Providencia stuartii clinical isolate from a Tunisian intensive care unit coproducing VEB-1-a, OXA-2, qnrA6 and aac(6 ‘)-Ib-cr determinants. Braz J Infect Dis. 2013 Dec 27;18. DOI: 10.1016/j.bjid.2013.10.00410.1016/j.bjid.2013.10.00424378226Search in Google Scholar

21. Liakopoulos A, Oikonomou O, Wareham DW. Draft Genome Sequence of Providencia stuartii PS71, a Multidrug-Resistant Strain Associated with Nosocomial Infections in Greece. Genome Announc. 2017 Mar;5(12). DOI: 10.1128/genomeA.00056-1710.1128/genomeA.00056-17536422228336597Search in Google Scholar

22. Molnár S, Vas K, Székely E. Carbapenemase Producing Enterobacterales in Romania: Investigating the Origins. Rev Rom Med Lab. 2020 Jul 1;28:341–8. DOI: 10.2478/rrlm-2020-002710.2478/rrlm-2020-0027Search in Google Scholar

23. Poirel L, Schrenzel J, Cherkaoui A, Bernabeu S, Renzi G, Nordmann P. Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. J Antimicrob Chemother. 2011 Aug;66(8):1730–3. DOI: 10.1093/jac/dkr17410.1093/jac/dkr17421628303Search in Google Scholar

24. Főldes A, Bilca D-V, Székely E. Phenotypic and molecular identification of carbapenemase-producing Enterobacteriaceae - challenges in diagnosis and treatment. Rev Rom Med Lab. 2018 Apr 1;26:221–30. DOI: 10.2478/rrlm-2018-001810.2478/rrlm-2018-0018Search in Google Scholar

25. Guclu A, Guney M, Sig AK, Kilic S, Baysallar M. Arising Prevalence of OXA-48 producer Escherichia coli and OXA-48 with NDM co-producer Klebsiella pneumoniae Strains. Rev Rom Med Lab. 2019 Jul 14;27:319–26. DOI: 10.2478/rrlm-2019-003010.2478/rrlm-2019-0030Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo