1. bookVolume 28 (2020): Issue 3 (July 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

The association of anthropometric parameters with markers of insulin and leptin secretion and resistance in type 2 diabetes mellitus

Published Online: 27 Jul 2020
Page range: 299 - 314
Received: 23 Apr 2020
Accepted: 20 Jun 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Aim: We evaluated the association between anthropometric parameters and markers of insulin and leptin secretion/resistance in patients with type 2 diabetes mellitus (T2DM).

Material and methods: This post-hoc data analysis from a cross-sectional study included 176 T2DM patients. Laboratory tests (serum leptin, soluble form of leptin receptor (sObR), C peptide, glycemic and lipid parameters) and anthropometric parameters were obtained, adiposity indexes (including body adiposity index (BAI), visceral adiposity index (VAI)), indicators of insulin resistance, β-cell function, and leptin resistance (Free Leptin Index, FLI) were calculated.

Results: The body mass index (BMI), diabetes duration, VAI and leptin correlated independently with HOMA-IR, while BMI, diabetes duration and HbA1c with HOMA-B. The total body fat mass (TBFM), C peptide, diabetes duration, BMI and BAI correlated with leptin concentrations, while the first three with FLI. VAI was an indicator of insulin resistance (β=0.166, p=0.003), while BAI of leptin secretion (β=0.260, p=0.010). TBFM strongly associated with leptin resistance and secretion (β=0.037, r=0.688, p<0.0001, and β=0.521, r=0.667, p<0.0001), and BMI correlated weakly with insulin secretion and resistance. While insulin and leptin secretion increased progressively with BMI, leptin and insulin resistance became significant only in case of obesity. The sObR was significantly associated with C peptide concentrations (β=-0.032; p=0.044), but not with HOMA-B or -IR. A strong positive correlation between the C peptide/leptin ratio and non-fat mass /TBFM ratio was noted (r=0.62 [0.52, 0.71], p<0.0001).

Conclusions: Parameters of peripheral adiposity correlated better with markers of leptin system, and those of visceral adiposity with markers of insulin secretion/resistance. The sObR correlated independently and negatively with C peptide.

Keywords

1. Fruh SM. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017 Oct; 29(S1): S3-S14. DOI: 10.1002/2327-6924.1251010.1002/2327-6924.12510608822629024553Search in Google Scholar

2. Romacho T, Elsen M, Röhrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf). 2014 Apr; 210(4): 733-53. DOI: 10.1111/apha.1224610.1111/apha.1224624495317Search in Google Scholar

3. Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res. 2019 Oct; 60(10): 1648-84. DOI: 10.1194/jlr.R09406010.1194/jlr.R094060679508631209153Search in Google Scholar

4. Ramos-Lobo AM, Donato J Jr. The role of leptin in health and disease. Temperature (Austin). 2017 May; 4(3): 258-91. DOI: 10.1080/23328940.2017.132700310.1080/23328940.2017.1327003560516228944270Search in Google Scholar

5. Cernea S, Roiban AL, Both E, Huţanu A. Serum leptin and leptin resistance correlations with NAFLD in patients with type 2 diabetes. Diabetes Metab Res Rev. 2018 Nov; 34(8): e3050. DOI: 10.1002/dmrr.305010.1002/dmrr.305030052309Search in Google Scholar

6. Cernea S, Both E, Huţanu A, Şular FL, Roiban AL. Correlations of serum leptin and leptin resistance with depression and anxiety in patients with type 2 diabetes. Psychiatry Clin Neurosci. 2019 Dec; 73(12):745-53. DOI: 10.1111/pcn.1292210.1111/pcn.1292231404477Search in Google Scholar

7. Marroquí L, Gonzalez A, Ñeco P, Caballero-Garrido E, Vieira E, Ripoll C, et al. Role of leptin in the pancreatic β-cell: effects and signaling pathways. J Mol Endocrinol. 2012 May; 49(1): R9-17. DOI: 10.1530/JME-12-002510.1530/JME-12-002522448029Search in Google Scholar

8. Kieffer TJ, Habener JF. The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab. 2000 Jan; 278(1): E1-E14. DOI: 10.1152/ajpendo.2000.278.1.E110.1152/ajpendo.2000.278.1.E110644531Search in Google Scholar

9. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015 Jan; 64(1): 35-46. DOI: 10.1016/j.metabol.2014.10.01510.1016/j.metabol.2014.10.01525497342Search in Google Scholar

10. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010 Jan; 11(1): 11-8. DOI: 10.1111/j.1467-789X.2009.00623.x10.1111/j.1467-789X.2009.00623.x19656312Search in Google Scholar

11. HOMA software downloaded from site https://www.dtu.ox.ac.uk/homacalculator/download.php.Search in Google Scholar

12. Herrick JE, Panza GS, Gollie JM. Leptin, Leptin Soluble Receptor, and the Free Leptin Index following a Diet and Physical Activity Lifestyle Intervention in Obese Males and Females. J Obes. 2016; 2016: 8375828. DOI: 10.1155/2016/837582810.1155/2016/8375828516855028050279Search in Google Scholar

13. Durnin J, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974 Jul; 32(1): 77-97. DOI: 10.1079/BJN1974006010.1079/BJN197400604843734Search in Google Scholar

14. Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993; 9(5): 480-91.Search in Google Scholar

15. Harris JA, Benedict FG. A Biometric study of human basal metabolism. Proc Natl Acad Sci U S A. 1918 Dec; 4(12): 370-3. DOI: 10.1073/pnas.4.12.37010.1073/pnas.4.12.370109149816576330Search in Google Scholar

16. Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity (Silver Spring). 2011 May; 19(5): 1083-9. DOI: 10.1038/oby.2011.3810.1038/oby.2011.38327563321372804Search in Google Scholar

17. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010 Apr; 33(4): 920-2. DOI: 10.2337/dc09-182510.2337/dc09-1825284505220067971Search in Google Scholar

18. Amato MC, Giordano C. Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol. 2014; 2014: 730827. DOI: 10.1155/2014/73082710.1155/2014/730827400933524829577Search in Google Scholar

19. Cohen J., Cohen P. Applied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum. 1983.Search in Google Scholar

20. Preacher, K. J. Calculation for the test of the difference between two independent correlation coefficients. 2002; [Computer software]. Available from http://quantpsy.org.Search in Google Scholar

21. Chen GC, Qin LQ, Ye JK. Leptin levels and risk of type 2 diabetes: Gender-specific meta-analysis. Obes Rev 2014 Feb; 15(2): 134-42. DOI: 10.1111/obr.1208810.1111/obr.1208824102863Search in Google Scholar

22. Wajchenberg BL: Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr Rev 2000 Dec; 21(6): 697-738. DOI: 10.1210/edrv.21.6.041510.1210/edrv.21.6.041511133069Search in Google Scholar

23. Van Harmelen V, Reynisdottir S, Eriksson P, Thörne A, Hoffstedt J, Lönnqvist F, et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes. 1998 Jun; 47(6): 913-7. DOI: 10.2337/diabetes.47.6.91310.2337/diabetes.47.6.9139604868Search in Google Scholar

24. Marchi M, Lisi S, Curcio M, Barbuti S, Piaggi P, Ceccarini G, et al. Human leptin tissue distribution, but not weight loss-dependent change in expression, is associated with methylation of its promoter. Epigenetics. 2011 Oct; 6(10): 1198-206. DOI: 10.4161/epi.6.10.1660010.4161/epi.6.10.16600322584121931275Search in Google Scholar

25. Jablonowska-Lietz B, Wrzosek M, Wlodarczyk M, Nowicka G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol Pol 2017; 75(11): 1185-91. DOI: 10.5603/KP.a2017.014910.5603/KP.a2017.014928715064Search in Google Scholar

26. Amato MC, Pizzolanti G, Torregrossa V, Misiano G, Milano S, Giordano C. Visceral adiposity index (VAI) is predictive of an altered adipokine profile in patients with type 2 diabetes. PLoS One. 2014; 9(3): e91969. DOI: 10.1371/journal.pone.009196910.1371/journal.pone.0091969396128124651545Search in Google Scholar

27. Al-Daghri NM, Al-Attas OS, Alokail M, Alkharfy K, Wani K, Amer OE, et al. Does visceral adiposity index signify early metabolic risk in children and adolescents?: association with insulin resistance, adipokines, and subclinical inflammation. Pediatr Res. 2014; 75(3): 459-63. DOI: 10.1038/pr.2013.22910.1038/pr.2013.22924296798Search in Google Scholar

28. Tinggaard J, Hagen CP, Christensen AN, Mouritsen A, Mieritz MG, Wohlfahrt-Veje C, et al. Anthropometry, DXA, and leptin reflect subcutaneous but not visceral abdominal adipose tissue on MRI in 197 healthy adolescents. Pediatr Res. 2017 Oct; 82(4): 620-28. DOI: 10.1038/pr.2017.13810.1038/pr.2017.13828604756Search in Google Scholar

29. Fu S, Ying L, Ping P, Luo L,Ye P. Overall obesity had similar ability to identify the insulin resistance and pancreatic β-cell function compared with abdominal obesity in chinese community-dwelling population without type 2 diabetes. Int J Clin Exp Med. 2017; 10(3): 5293-9.Search in Google Scholar

30. Fernandes TAP, Gonçalves LML, Brito JAA. Relationships between Bone Turnover and Energy Metabolism. J Diabetes Res. 2017; 2017: 9021314. DOI: 10.1155/2017/902131410.1155/2017/9021314548550828695134Search in Google Scholar

31. Rutti S, Dusaulcy R, Hansen JS, Howald C, Dermitzakis ET, Pedersen BK, et al. Angiogenin and Osteoprotegerin are type II muscle specific myokines protecting pancreatic beta-cells against proinflamma-tory cytokines. Sci Rep. 2018 Jul; 8(1): 10072. DOI: 10.1038/s41598-018-28117-210.1038/s41598-018-28117-2603012329968746Search in Google Scholar

32. Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia. 2016 Apr; 59(4): 659-67. DOI: 10.1007/s00125-015-3862-710.1007/s00125-015-3862-7480110426791990Search in Google Scholar

33. Seufert J. Leptin effects on pancreatic beta-cell gene expression and function. Diabetes. 2004; 53 Suppl 1: S152-8. DOI: 10.2337/diabetes.53.2007.S15210.2337/diabetes.53.2007.S152Search in Google Scholar

34. Morioka T, Emoto M, Yamazaki Y, Kurajoh M, Motoyama K, Mori K et al. Plasma soluble leptin receptor levels are associated with pancreatic β-cell dysfunction in patients with type 2 diabetes. J Diabetes Investig. 2018 Jan; 9(1): 55-62. DOI: 10.1111/jdi.1265710.1111/jdi.12657575452128294581Search in Google Scholar

35. Ge H, Huang L, Pourbahrami T, Li C. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem. 2002 Nov; 277(48): 45898-903. DOI: 10.1074/jbc.M20582520010.1074/jbc.M20582520012270921Search in Google Scholar

36. Lammert A, Kiess W, Bottner A, Glasow A, Kratzsch J. Soluble leptin receptor represents the main leptin binding activity in human blood. Biochem Biophys Res Commun. 2001 May; 283(4): 982-8. DOI: 10.1006/bbrc.2001.488510.1006/bbrc.2001.488511350082Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo