1. bookVolume 28 (2020): Issue 3 (July 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

SH2B3 (LNK) rs3184504 polymorphism is correlated with JAK2 V617F-positive myeloproliferative neoplasms

Published Online: 27 Jul 2020
Page range: 267 - 277
Received: 15 Feb 2020
Accepted: 05 Apr 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background: Pathogenesis and phenotypic diversity in myeloproliferative neoplasms (MPN) cannot be fully explained by the currently known acquired mutations alone. Some susceptible germline variants of different genes have been proved to be associated with the development of these diseases. The goal of our study was to evaluate the association between the rs3184504 polymorphism of SH2B3 (LNK) gene (p.R262W, c.784T>C) and the risk of developing the four typical MPN - polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), and chronic myeloid leukemia (CML).

Material and methods: We investigated the SH2B3 rs3184504 T>C polymorphism by real-time PCR in 1901 MPN patients (575 with PV, 798 with ET, 251 with PMF, and 277 with CML), all of them harboring one of the specific driver mutations - JAK2 V617F or CALR in case of PV, ET and PMF, or BCR-ABL1 in case of CML, and 359 controls.

Results: Overall, the TT homozygous genotype was significantly associated with BCR-ABL1-negative MPN (OR = 1.34; 95% CI = 1.03-1.74; crude p-value = 0.02; adjusted p-value = 0.04). The most significant association was seen in case of PV (OR = 1.54; 95% CI = 1.14-2.06; crude p-value = 0.004; adjusted p-value = 0.024). Also, SH2B3 rs3184504 correlated significantly with JAK2 V617F-positive MPN (OR = 1.36; 95% CI = 1.04-1.77; crude p-value = 0.02; adjusted p-value = 0.08), but not with those CALR-positive. ET (regardless of molecular subtype) and CML were not correlated with SH2B3 rs3184504.

Conclusions: The SH2B3 rs3184504 polymorphism is associated with risk of MPN development, especially PV. This effect is restricted to JAK2 V617F-positive PV and PMF only.

Keywords

1. Abdel-Wahab O. Genetics of the myeloproliferative neoplasms. Curr Opin Hematol. 2011;18(2):117-23. DOI: 10.1097/MOH.0b013e328343998e10.1097/MOH.0b013e328343998e21307773Search in Google Scholar

2. Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15. DOI: 10.1038/s41408-018-0054-y10.1038/s41408-018-0054-y580738429426921Search in Google Scholar

3. Tefferi A, Pardanani A. Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol. 2015;1(1):97-105. DOI: 10.1001/jamaoncol.2015.8910.1001/jamaoncol.2015.8926182311Search in Google Scholar

4. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. DOI: 10.1182/blood-2016-03-64354410.1182/blood-2016-03-64354427069254Search in Google Scholar

5. Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130(23):2475-83. DOI: 10.1182/blood-2017-06-78203710.1182/blood-2017-06-78203729212804Search in Google Scholar

6. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199-204. DOI: 10.1182/blood-2008-03-14360210.1182/blood-2008-03-143602253279718451307Search in Google Scholar

7. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446-9. DOI: 10.1038/ng.33410.1038/ng.334412019219287382Search in Google Scholar

8. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41(4):455-9. DOI: 10.1038/ng.34210.1038/ng.342367642519287384Search in Google Scholar

9. Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41(4):450-4. DOI: 10.1038/ng.34110.1038/ng.34119287385Search in Google Scholar

10. Jones AV, Campbell PJ, Beer PA, Schnittger S, Vannucchi AM, Zoi K, et al. The JAK2 46/1 haplotype predis-poses to MPL-mutated myeloproliferative neoplasms. Blood. 2010;3;115(22):4517-23. DOI: 10.1182/blood-2009-08-23644810.1182/blood-2009-08-236448314511420304805Search in Google Scholar

11. Trifa AP, Banescu C, Tevet M, Bojan A, Dima D, Urian L, et al. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloproliferative neoplasms - a multicentric study on 529 patients. Br J Haematol. 2016;174(2):218-26. DOI: 10.1111/bjh.1404110.1111/bjh.1404127061303Search in Google Scholar

12. Trifa AP, Banescu C, Bojan AS, Voina CM, Popa S, Visan S, et al. MECOM, HBS1L-MYB, THRB-RARB, JAK2, and TERT polymorphisms defining the genetic predisposition to myeloproliferative neoplasms: A study on 939 patients. Am J Hematol. 2018;93(1):100-6. DOI: 10.1002/ajh.2494610.1002/ajh.2494629047144Search in Google Scholar

13. Oddsson A, Kristinsson SY, Helgason H, Gudbjartsson DF, Masson G, Sigurdsson A, et al. The germ-line sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia. 2014;28(6):1371-4. DOI: 10.1038/leu.2014.4810.1038/leu.2014.48405121724476768Search in Google Scholar

14. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015;6:6691. DOI: 10.1038/ncomms769110.1038/ncomms7691439637325849990Search in Google Scholar

15. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121-8. DOI: 10.1182/blood-2015-06-65294110.1182/blood-2015-06-652941508525427365426Search in Google Scholar

16. Velazquez L. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz). 2012;60(6):415-29. DOI: 10.1007/s00005-012-0194-x10.1007/s00005-012-0194-x22990499Search in Google Scholar

17. Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia. 2017;31(8):1661-70. DOI: 10.1038/leu.2017.13910.1038/leu.2017.13928484264Search in Google Scholar

18. McMullin MF, Cario H. LNK mutations and myeloproliferative disorders. Am J Hematol. 2016;91(2):248-51. DOI: 10.1002/ajh.2425910.1002/ajh.2425926660394Search in Google Scholar

19. Rumi E, Cazzola M. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms. Br J Haematol. 2017;178(5):689-98. DOI: 10.1111/bjh.1471310.1111/bjh.1471328444727Search in Google Scholar

20. Lesteven E, Picque M, Conejero Tonetti C, Giraudier S, Varin-Blank N, Velazquez L, et al. Association of a single-nucleotide polymorphism in the SH2B3 gene with JAK2V617F-positive myeloproliferative neoplasms. Blood. 2014;123(5):794-6. DOI: 10.1182/blood-2013-10-53262210.1182/blood-2013-10-53262224482502Search in Google Scholar

21. Chen Y, Fang F, Hu Y, Liu Q, Bu D, Tan M, et al. The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms. PLoS One. 2016;11(4):e0154183. DOI: 10.1371/journal. pone.0154183Search in Google Scholar

22. Olkhovskiy IA, Gorbenko AS, Stolyar MA, Vasiliev EV, Mikhalev MA, Tabakova KA. T784C LNK gene polymorphism and the risk of myeloproliferative disorders. Leuk Lymphoma. 2019;60(1):277-8. DOI: 10.1080/10428194.2018.145960410.1080/10428194.2018.1459604Search in Google Scholar

23. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162-8. DOI: 10.1182/blood-2005-03-132010.1182/blood-2005-03-1320Search in Google Scholar

24. Jovanovic JV, Ivey A, Vannucchi AM, Lippert E, Oppliger Leibundgut E, Cassinat B, et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia. 2013;27:2032-9. DOI: 10.1038/leu.2013.21910.1038/leu.2013.219Search in Google Scholar

25. Trifa AP, Cucuianu A, Popp RA. Familial Essential Thrombocythemia Associated with MPL W515L Mutation in Father and JAK2 V617F Mutation in Daughter. Case Rep Hematol 2014;2014:841787. DOI: 10.1155/2014/84178710.1155/2014/841787Search in Google Scholar

26. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901-28. DOI: 10.1038/sj.leu.240159210.1038/sj.leu.2401592Search in Google Scholar

27. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125(1-2):279-84. DOI: 10.1016/S0166-4328(01)00297-210.1016/S0166-4328(01)00297-2Search in Google Scholar

28. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.Search in Google Scholar

29. Brian G. Kral, Lewis C. Becker, Chapter 8 - Genetics of Coronary Disease, Editor(s): Wilbert S. Aronow, John Arthur McClung, Translational Research in Coronary Artery Disease, Academic Press, 2016, Pages 81-101. DOI: 10.1016/B978-0-12-802385-3.00008-510.1016/B978-0-12-802385-3.00008-5Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo