1. bookVolume 28 (2020): Issue 3 (July 2020)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Characterization of antibiotic resistance integrons harbored by Romanian Escherichia coli uropathogenic strains

Published Online: 27 Jul 2020
Page range: 331 - 340
Received: 14 Jan 2020
Accepted: 23 Mar 2020
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Because little is known about the integrons which constitute an important means of spreading resistance in bacteria circulating in Romania, this study aimed to detect antibiotic resistance gene cassettes embedded in integrons in a convenient collection of 60 ciprofloxacin-resistant Escherichia coli isolates of various phylogroups, associated with community-acquired urinary tract infections. Characterization of the integrons was accomplished by PCR, restriction fragment length polymorphism typing, and DNA sequencing of each identified type. More than half of the tested E. coli strains were positive for integrons of class 1 (31 strains) or 2 (1 strain). These strains derived more frequently from phylogenetic groups A (15 of 21 strains), B1 (10 of 14 strains), and F (3 of 4 strains), respectively. While 20 strains carried class 1 integrons which could be assigned to nine types, eleven strains carried integrons that lacked the 3’-end conserved segment. The attempts made to characterize the gene cassettes located within the variable region of the various integrons identified in this study revealed the presence of genes encoding resistance to trimethoprim, aminoglycosides, beta-lactams or chloramphenicol. The evidence of transferable resistance determinants already established in the autochthonous E. coli strains highlights the need for improved control of resistance-carrying bacteria.

Keywords

1. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS et al. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66. DOI: 10.1016/S1473-3099(18)30605-410.1016/S1473-3099(18)30605-4Search in Google Scholar

2. Lim C, Takahashi E, Hongsuwan M, Wuthiekanun V, Thamlikitkul V, Hinjoy S et al. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. Elife. 2016;6: pii: e18082. DOI: 10.7554/eLife.1808210.7554/eLife.18082503009627599374Search in Google Scholar

3. Mazzariol A, Bazaj A, Cornaglia G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J Chemother. 2017;29(1):2-9. DOI: 10.1080/1120009X.2017.138039510.1080/1120009X.2017.138039529271736Search in Google Scholar

4. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr. 2018;6(4): ARBA-0026-2017. DOI: 10.1128/microbiolspec.ARBA-0026-201710.1128/microbiolspec.ARBA-0026-201730003866Search in Google Scholar

5. Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R et al. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev. 2016;40(4):437-63. DOI: 10.1093/femsre/fuw00510.1093/femsre/fuw00528201713Search in Google Scholar

6. Gillings MR. Integrons: past, present, and future. Microbiol Mol Biol Rev. 2014;78:257-77. DOI: 10.1128/MMBR.00056-1310.1128/MMBR.00056-13405425824847022Search in Google Scholar

7. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4): pii: e00088-17. DOI: 10.1128/CMR.00088-1710.1128/CMR.00088-17614819030068738Search in Google Scholar

8. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob. 2015;20:14:45. DOI: 10.1186/s12941-015-0100-610.1186/s12941-015-0100-6461827726487554Search in Google Scholar

9. Lacotte Y, Ploy MC, Raherison S. Class 1 integrons are low-cost structures in Escherichia coli. ISME J. 2017;11(7):1535-44. DOI: 10.1038/ismej.2017.3810.1038/ismej.2017.38552015628387772Search in Google Scholar

10. Kaushik M, Kumar S, Kapoor RK, Virdi JS, Gulati P. Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents. 2018;51(2):167-76. DOI: 10.1016/j.ijantimicag.2017.10.00410.1016/j.ijantimicag.2017.10.00429038087Search in Google Scholar

11. Cristea VC, Oprea M, Neacşu G, Gîlcă R, Popa MI, Usein CR. Mechanisms of resistance to ciprofloxacin and genetic diversity of Escherichia coli strains originating from urine cultures performed for Romanian adults. Roum Arch Microbiol Immunol. 2015;74(3-4):73-8.Search in Google Scholar

12. Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp. J Bacteriol. 2007;189(17):6276-83. DOI: 10.1128/JB.00348-0710.1128/JB.00348-07195191317573473Search in Google Scholar

13. Lévesque C, Piché L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995;39(1):185-191. DOI: 10.1128/AAC.39.1.18510.1128/AAC.39.1.1851625077695304Search in Google Scholar

14. Machado E, Ferreira J, Novais A, Peixe L, Cantón R, Baquero F et al. Preservation of integron types among Enterobacteriaceae producing extended-spectrum beta-lactamases in a Spanish hospital over a 15-year period (1988 to 2003). Antimicrob Agents Chemother. 2007;51(6):2201-04. DOI: 10.1128/AAC.01389-0610.1128/AAC.01389-06189139417404002Search in Google Scholar

15. Străuț M, Dinu S, Oprea M, Drãgulescu EC, Lixandru BE, Surdeanu M. Genetic diversity of structures surrounding bla genes identified in Pseudomonas aeruginosa clinical isolates from Bucharest, Romania. Roum Arch Microbiol Immunol. 2018; 77(1):16-27.Search in Google Scholar

16. Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob Agents Chemother. 2004;48(12):4654-61. DOI: 10.1128/AAC.48.12.4654-4661.200410.1128/AAC.48.12.4654-4661.200452918915561840Search in Google Scholar

17. Untergasser A, Cutcutache I, Koressaar T, Ye J, Fair-cloth BC, Remm M, et al. Tm calculation and software from Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15:e115. DOI: 10.1093/nar/gks59610.1093/nar/gks596342458422730293Search in Google Scholar

18. Dawes FE, Kuzevski A, Bettelheim KA, Hornitzky MA, Djordjevic SP, Walker MJ. Distribution of class 1 integrons with IS26-mediated deletions in their 3’-conserved segments in Escherichia coli of human and animal origin. PLoS One. 2010;5(9):e12754. DOI: 10.1371/journal.pone.001275410.1371/journal.pone.0012754293987120856797Search in Google Scholar

19. Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 2007;43(5):649-50. DOI: 10.2144/00011260110.2144/00011260118072594Search in Google Scholar

20. Tsafnat G, Copty J, Partridge SR. RAC: Repository of Antibiotic-resistance Cassettes. Database 2011;bar054. DOI: 10.1093/database/bar05410.1093/database/bar054322920722140215Search in Google Scholar

21. Díaz-Mejía JJ, Amábile-Cuevas CF, Rosas I, Souza V. An analysis of the evolutionary relationships of integron integrases, with emphasis on the prevalence of class 1 integrons in Escherichia coli isolates from clinical and environmental origins. Microbiology. 2008;154:94-102. DOI: 10.1099/mic.0.2007/008649-010.1099/mic.0.2007/008649-018174129Search in Google Scholar

22. Oliveira-Pinto C, Diamantino C, Oliveira PL, Reis MP, Costa PS, Paiva MC et al. Occurrence and characterization of class 1 integrons in Escherichia coli from healthy individuals and those with urinary infection. J Med Microbiol. 2017;66(5):577-83. DOI: 10.1099/jmm.0.00046810.1099/jmm.0.00046828485709Search in Google Scholar

23. Leverstein-van Hall MA, M Blok HE, T Donders AR, Paauw A, Fluit AC, Verhoef J. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis. 2003;187(2):251-9. DOI: 10.1086/34588010.1086/34588012552449Search in Google Scholar

24. Mooij MJ, Schouten I, Vos G, Van Belkum A, Vandenbroucke-Grauls CM, Savelkoul PH et al. Class 1 integrons in ciprofloxacin-resistant Escherichia coli strains from two Dutch hospitals. Clin Microbiol Infect. 2005;11(11):898-902. DOI: 10.1111/j.1469-0691.2005.01259.x10.1111/j.1469-0691.2005.01259.x16216105Search in Google Scholar

25. Rao AN, Barlow M, Clark LA, Boring JR 3rd, Tenover FC, McGowan JE Jr. Class 1 integrons in resistant Escherichia coli and Klebsiella spp., US hospitals. Emerg Infect Dis. 2006;12(6):1011-4. DOI: 10.3201/eid1206.05159610.3201/eid1206.051596337305716707065Search in Google Scholar

26. Stephenson SA, Brown PD. Occurrence of class 1 integrons in uropathogenic fluoroquinolone-resistant clinical Escherichia coli isolates from Jamaica. APMIS. 2013;121(3):226-31. DOI: 10.1111/j.1600-0463.2012.02960.x10.1111/j.1600-0463.2012.02960.x23030058Search in Google Scholar

27. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99(8):5638-42. DOI: 10.1073/pnas.08209289910.1073/pnas.08209289912282311943863Search in Google Scholar

28. Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother. 2003;47(7):2242-8. DOI: 10.1128/AAC.47.7.2242-2248.200310.1128/AAC.47.7.2242-2248.200316183412821475Search in Google Scholar

29. Yang H, Chen H, Yang Q, Chen M, Wang H. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac(6’)-Ib-cr in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China. Anti-microb Agents Chemother. 2008;52(12):4268-73. DOI: 10.1128/AAC.00830-0810.1128/AAC.00830-08259287718809939Search in Google Scholar

30. El-Najjar NG, Farah MJ, Hashwa FA, Tokajian ST. Antibiotic resistance patterns and sequencing of class I integron from uropathogenic Escherichia coli in Lebanon. Lett Appl Microbiol. 2010;51(4):456-61. DOI: 10.1111/j.1472-765X.2010.02926.x10.1111/j.1472-765X.2010.02926.x20840552Search in Google Scholar

31. Zeighami H, Haghi F, Masumian N, Hemmati F, Samei A, Naderi G. Distribution of integrons and gene cassettes among uropathogenic and diarrheagenic Escherichia coli isolates in Iran. Microb Drug Resist. 2015;21(4):435-40. DOI: 10.1089/mdr.2014.014710.1089/mdr.2014.014725658172Search in Google Scholar

32. Sunde M, Simonsen GS, Slettemeås JS, Böckerman I, Norström M. Integron, plasmid and host strain characteristics of Escherichia coli from humans and food included in the Norwegian antimicrobial resistance monitoring programs. PLoS One. 2015;10(6):e0128797. DOI: 10.1371/journal.pone.012879710.1371/journal.pone.0128797445780926047499Search in Google Scholar

33. Skurnik D, Le Menac’h A, Zurakowski D, Mazel D, Courvalin P, Denamur E, Andremont A, Ruimy R. Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob Agents Chemother. 2005;49(7):3062-5. DOI: 10.1128/AAC.49.7.3062-3065.200510.1128/AAC.49.7.3062-3065.2005116862915980401Search in Google Scholar

34. Post V, Recchia GD, Hall RM. Detection of gene cassettes in Tn402-like class 1 integrons. Antimicrob Agents Chemother. 2007;51(9):3467-8. DOI: 10.1128/AAC.00220-0710.1128/AAC.00220-07204317617591852Search in Google Scholar

35. Vinué L, Sáenz Y, Somalo S, Escudero E, Moreno MA, Ruiz-Larrea F, Torres C. Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain. J Antimicrob Chemother. 2008;62(5):934-7. DOI: 10.1093/jac/dkn33110.1093/jac/dkn33118708645Search in Google Scholar

36. Sáenz Y, Vinué L, Ruiz E, Somalo S, Martínez S, Rojo-Bezares B et al. Class 1 integrons lacking qacEDelta1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Vet Microbiol. 2010;144(3-4):493-7. DOI: 10.1016/j.vetmic.2010.01.02610.1016/j.vetmic.2010.01.02620176451Search in Google Scholar

37. Rijavec M, Starcic Erjavec M, Ambrozic Avgustin J, Reissbrodt R, Fruth A, Krizan-Hergouth V et al. High prevalence of multidrug resistance and random distribution of mobile genetic elements among uropathogenic Escherichia coli (UPEC) of the four major phylogenetic groups. Curr Microbiol. 2006;53(2):158-62. DOI: 10.1007/s00284-005-0501-410.1007/s00284-005-0501-416802204Search in Google Scholar

38. Ochoa SA, Cruz-Córdova A, Luna-Pineda VM, Reyes-Grajeda JP, Cázares-Domínguez V, Escalona G et al. Multidrug- and extensively drug-resistant uropathogenic Escherichia coli clinical strains: Phylogenetic groups widely associated with integrons maintain high genetic diversity. Front Microbiol. 2016;7:2042. DOI: 10.3389/fmicb.2016.0204210.3389/fmicb.2016.02042517408228066364Search in Google Scholar

39. Kõljalg S, Truusalu K, Stsepetova J, Pai K, Vainumäe I, Sepp E et al. The Escherichia coli phylogenetic group B2 with integrons prevails in childhood recurrent uri-nary tract infections. APMIS 2014;122(5):452-458. DOI: 10.1111/apm.1216710.1111/apm.1216724033434Search in Google Scholar

40. Poey ME, Lavi-a M. Integrons in uropathogenic Escherichia coli and their relationship with phylogeny and virulence. Microb Pathog. 2014;77:73-7. DOI: 10.1016/j.micpath.2014.11.00210.1016/j.micpath.2014.11.00225448130Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo