1. bookVolume 22 (2014): Issue 3 (September 2014)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Optimisation of the quantitative analysis of inflammatory cell infiltrates in breast cancer /Optimizarea analizei cantitative a infiltratului celular inflamator în cancerul mamar

Published Online: 08 Oct 2014
Page range: 335 - 345
Received: 09 Apr 2014
Accepted: 01 Sep 2014
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

In this study we aimed to determine the optimal cut-off point for the quantitative analysis of inflammatory infiltrates in breast cancer, using the HistoQuest system. We used samples of tumour breast tissue which were IHC stained with CD68 and CD8 and subsequently tested with automated systems on three regions: intratumoral, invasive front and peritumoral, using the HistoQuest system. In order to delimit between positive and negative cells on histograms and scattergrams, we need to set a cut-off value. We compared 5 cut-off types for optimisation of the quantitative analysis. The results obtained statistically for the CD8 marker for all 5 types of cut-offs applied on IT, PT and IF regions did not show statistically significant differences (p > 0.05). As for the CD68 marker, we found statistically significant differences (p < 0.05) between manual cut-offs (C2 - manual and C3 - manual, arithmetic mean) and automated cut-offs placed by the software (C1 - automated, C4 - negative region, and C5 - automated, arithmetic mean), which suggests that the use of an automated cut-off should be preferred in order to remove the subjective factor. The automated cut-off setting generates objective and reproducible data and can be used in subsequent quantitative analyses.

Keyword

Cuvinte cheie

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010 Sep-Oct;60(5):277-300. DOI: 10.3322/caac.2007310.3322/caac.2007320610543Search in Google Scholar

2. DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 2010 Jun;29(2):309-16. DOI: 10.1007/s10555-010-9223-610.1007/s10555-010-9223-6286563520405169Search in Google Scholar

3. Rakha EA, Reis-Filho JS, Ellis IO. Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat. 2010 Apr;120(2):293-308. DOI: 10.1007/ s10549-010-0746-x10.1007/s10549-010-0746-x20107892Search in Google Scholar

4. Jochems C, Schlom J. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood). 2011 May;236(5):567-79. DOI: 10.1258/ ebm.2011.01100710.1258/ebm.2011.011007322926121486861Search in Google Scholar

5. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012 Mar;12(4):298-306. DOI: 10.1038/nrc324510.1038/nrc324522419253Search in Google Scholar

6. Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012 Aug;37(2):364-76. DOI: 10.1016/j.immuni. 2012.07.011Search in Google Scholar

7. Ascierto PA, Capone M, Urba WJ, Bifulco CB, Botti G, Lugli A, et al. The additional facet of immunoscore: immunoprofiling as a possible predictive tool for cancer treatment. J Transl Med. 2013 Mar;11:54. DOI: 10.1186/1479-5876-11-5410.1186/1479-5876-11-54360822523452415Search in Google Scholar

8. Galon J, Pages F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune scor as a new possible approach for the classification of cancer. J Transl Med 2012 Jan;10:1. DOI: 10.1186/1479-5876-10-110.1186/1479-5876-10-1326936822214470Search in Google Scholar

9. Al-Kofahi Y, Lassoued W, Grama K, Nath SK, Zhu J, Oueslati R, et al. Cell-based quantification of molecular biomarkers in histopathology specimens. Histopathology 2011 Jul;59(1):40-54. DOI: 10.1111/j.1365-2559.2011.03878.x10.1111/j.1365-2559.2011.03878.x314209521771025Search in Google Scholar

10. Eiró N, Pidal I, Fernandez-Garcia B, Junquera S, Lamelas ML, del Casar JM, et al. Impact of CD68/ (CD3+CD20) ratio at the invasive front of primary tumors on distant metastasis development in breast cancer. PLoS One. 2012; 7(12): e52796. DOI: 10.1371/ journal.pone.005279610.1371/journal.pone.0052796353050823300781Search in Google Scholar

11. Chang H, Yang Q, Parvin B. Segmentation of heterogeneous blob objects through voting and level set for mulation. Pattern Recognit Lett. 2007;28(13):1781-7. DOI: 10.1016/j.patrec.2007.05.00810.1016/j.patrec.2007.05.008274732519774202Search in Google Scholar

12. Lin G, Chawla MK, Olson K, Guzowski JF, Barnes CA, Roysam B. Hierarchical, model-based merging of multiple fragments for improved three-dimensional segmentation of nuclei. Cytometry A. 2005;63(1):20-33. DOI: 10.1002/cyto.a.2009910.1002/cyto.a.20099Search in Google Scholar

13. De Solorzano CO, Malladi R, Lelievre SA, Lockett SJ. Segmentation of nuclei and cells using membrane related protein markers. J Microsc. 2001 Mar;201(Pt 3):404-1. DOI: 10.1046/j.1365-2818.2001.00854.x10.1046/j.1365-2818.2001.00854.xSearch in Google Scholar

14. Ancin H, Roysam B, Dufresne TE, Chestnut MM, Ridder GM, Szarowski DH, et al. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy. Cytometry. 1996 Nov;25(3):221-34. DOI: 10.1002/(SICI)1097-0320(19961101)25:3<221::AIDCYTO3> 3.3.CO;2-O DOI: 10.1002/(SICI)1097-0320(19961101)25:3<221::AID-CYTO3>3.0.CO;2-I10.1002/(SICI)1097-0320(19961101)25:3<221::AID-CYTO3>3.0.CO;2-ISearch in Google Scholar

15. Căruntu ID, Covic A. Renal corpuscle morphometry with increased reliability and high level of automation. Pathol Res Pract. 2007;203:9-20. DOI: 10.1016/j. prp.2006.06.002Search in Google Scholar

16. Galon J, Pagès F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The immune score as a new possible approach for the classification of cancer. J Transl Med. 2012 Jan;10:1. DOI: 10.1186/1479-5876-10-110.1186/1479-5876-10-1Search in Google Scholar

17. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011 May;29(15):1949-55. DOI: 10.1200/ JCO.2010.30.503710.1200/JCO.2010.30.5037Search in Google Scholar

18. Dutta S, Going JJ, Crumley AB, Mohammed Z, Orange C, Edwards J, et al. The relationship between tumour necrosis, tumour proliferation, local and systemic inflammation, microvessel density and survival in patients undergoing potentially curative resection of oesophageal adenocarcinoma. Br J Cancer. 2012 Feb;106(4):702-10. DOI: 10.1038/bjc.2011.61010.1038/bjc.2011.610Search in Google Scholar

19. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat. 2012 Apr;132(2):545-53. DOI: 10.1007/s10549-011-1620-110.1007/s10549-011-1620-1Search in Google Scholar

20. Turbin DA, Leung S, Cheang MC, Kennecke HA, Montgomery KD, McKinney S, et al. Automated quantitative analysis of estrogen receptor expression in breast carcinoma does not differ from expert pathologist scoring: a tissue microarray study of 3,484 cases. Breast Cancer Res Treat. 2008 Aug;110(3):417-26. DOI: 10.1007/s10549-007-9736-z10.1007/s10549-007-9736-zSearch in Google Scholar

21. Budczies J, Klauschen F, Sinn BV, Győrffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862. DOI: 10.1371/journal. pone.0051862 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo