1. bookVolume 22 (2014): Issue 1 (March 2014)
Journal Details
License
Format
Journal
eISSN
2284-5623
ISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Specific Associations Between Clinical Signs, Immune Cells, Disease Genetic Background and Burden in a Group of Patients with B-Cell Chronic Lymphocytic Leukemia

Journal Details
License
Format
Journal
eISSN
2284-5623
ISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Traffic of tumor- and normal cells through the peripheral blood (PB) of patients with B-cell chronic lymphocytic leukemia (B-CLL) to the lymph nodes (LN) or spleen/ liver sites is governed by specific changes in surface and intracellular molecule expression. The study aims to investigate the potential association between different lymphocyte subsets, chemokine receptors or genetic alterations and specific clinical signs in a group of B-CLL patients. Forty-three patients were included in the study. The expression of CCR7, CXCR5, CXCR3, CCR4, CD3, CD4, CD8, CD27, CD28, CD45RA, CD25, CD127, CD38 was tested by multiparameter flow cytometry. Genetic alterations were determined by MLPA. We found increased frequency of CD38+ B-CLL cells directly correlated with the presence of LN>5cm. CXCR5 and CCR7 are homogenously expressed by monoclonal B-CLL cells. CCR4+ B-CLL cell frequency is found to be lower in the PB of patients presenting particular LN involvement. Heterogeneous and complex genetic alterations were found and only the presence of trisomy 12 associated with less frequent axillary LN involvement. We also report a significant increase in the frequency of total T cells and T cell subsets (effector- and central memory CD4+ T cells, regulatory T cells, follicular T helper cells, distinct functional CD8+ T cells) with the occurrence of specific clinical manifestations. Chemokine receptor expression on circulating CD4+ T cell subsets was augmented in connection to some specific LN locations. Consequently, clinical manifestations in B-CLL are linked to both, factors intrinsic to the monoclonal B cells, and external influences coming from the microenvironment.

Keywords

Cuvinte cheie

1. Grigore GE, Dascalescu A, Zlei M, Ivanov IC, Danaila C, Petreus T, et al. Rai stage-related changes within T/ NK cell populations from B-CLL patients. Rev Romana Med Lab. 2013;21(3):321-31. DOI: 10.2478/rrlm-2013-003210.2478/rrlm-2013-0032Search in Google Scholar

2. D’Arena G, Guariglia R, La Rocca F, Trino S, Condelli V, De Martino L, et al. Autoimmune Cytopenias in Chronic Lymphocytic Leukemia. Clin Dev Immunol. 2013:730131. DOI: 10.1155/2013/73013110.1155/2013/730131Search in Google Scholar

3. Hallek M. State-of-the-art treatment of chronic lymphocytic leukemia. ASH Education Program Book. 2009;2009(1):440-9.10.1182/asheducation-2009.1.440Search in Google Scholar

4. Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J et al. Human peripheral blood B-cell compartments: A crossroad in B-cell traffic. Cytometry Part B: Clinical Cytometry. 2010;78(S1):S47-S60. DOI: 10.1002/cyto.b.2054710.1002/cyto.b.20547Search in Google Scholar

5. Zenz T, Mertens D, Küppers R, Döhner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010 Jan;10(1):37-50. DOI: 10.1038/nrc276410.1038/nrc2764Search in Google Scholar

6. Davids MS, Burger JA. Cell trafficking in chronic lymphocytic leukemia. Open J Hematol. 2012;3(S1).10.13055/ojhmt_3_S1_03.120221Search in Google Scholar

7. Caligaris-Cappio F. Role of the microenvironment in chronic lymphocytic leukaemia. British journal of haematology. 2003;123(3):380-8. DOI: 10.1046/j.1365-2141.2003.04679.x10.1046/j.1365-2141.2003.04679.xSearch in Google Scholar

8. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. European Journal of Immunology. 2002;32(5):1403-13. DOI: 10.1002/1521-4141(200205)32:5<1403::AID-IMMU1403> 3.0.CO;2-YSearch in Google Scholar

9. Fabris S, Scarciolla O, Morabito F, Cifarelli RA, Dininno C, Cutrona G, et al. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in Chronic lymphocytic leukemia: A comparative study. Genes, Chromosomes and Cancer. 2011;50(9):726-34. DOI: 10.1002/gcc.2089410.1002/gcc.20894Search in Google Scholar

10. Deutsch AJA, Steinbauer E, Hofmann NA, Strunk D, Gerlza T, Beham-Schmid C, et al. Chemokine receptors in gastric MALT lymphoma: loss of CXCR4 and upregulation of CXCR7 is associated with progression to diffuse large B-cell lymphoma. Mod Pathol. 2013 Feb;26(2):182-94.10.1038/modpathol.2012.134Search in Google Scholar

11. Han T, Abdel-Motal UM, Chang D-K, Sui J, Muvaffak A, Campbell J, et al. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous t-cell lymphoma. PloS one. 2012;7(9):e44455. DOI: 10.1371/journal. pone.0044455Search in Google Scholar

12. Chang D-K, Sui J, Geng S, Muvaffak A, Bai M, Fuhlbrigge RC, et al. Humanization of an anti-CCR4 antibody that kills cutaneous T-cell lymphoma cells and abrogates suppression by T-regulatory cells. Molecular Cancer Therapeutics. 2012;11(11):2451-61. DOI: 10.1158/1535-7163.MCT-12-027810.1158/1535-7163.MCT-12-0278Search in Google Scholar

13. Ishida T, Ishii T, Inagaki A, Yano H, Kusumoto S, Ri M, et al. The CCR4 as a novel-specific molecular target for immunotherapy in Hodgkin lymphoma. Leukemia. 2006;20(12):2162-8. DOI: 10.1038/sj.leu.240441510.1038/sj.leu.2404415Search in Google Scholar

14. Al-haidari Amr A., Syk I, Jirström K, Thorlacius H. CCR4 mediates CCL17 (TARC)-induced migration of human colon cancer cells via RhoA/Rho-kinase signaling. Int J Colorectal Dis. 2013 Nov 1;28(11):1479-87. DOI: 10.1007/s00384-013-1712-y10.1007/s00384-013-1712-ySearch in Google Scholar

15. Li J-Y, Ou Z-L, Yu S-J, Gu X-L, Yang C, Chen A-X et al. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast cancer research and treatment. 2012;131(3):837-48. DOI: 10.1007/s10549-011-1502-610.1007/s10549-011-1502-6Search in Google Scholar

16. Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, et al. Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer. 2013 Jun 15;132(12):2755-66. DOI: 10.1002/ijc.2796610.1002/ijc.27966Search in Google Scholar

17. Mahadevan D, Choi J, Cooke L, Simons B, Riley C, Klinkhammer T, et al. Gene Expression and Serum Cytokine Profiling of Low Stage CLL Identify WNT/ PCP, Flt-3L/Flt-3 and CXCL9/CXCR3 as Regulators of Cell Proliferation, Survival and Migration. Hum Genomics Proteomics. 2009;2009:453634. DOI: 10.4061/2009/45363410.4061/2009/453634Search in Google Scholar

18. Singh AK, Arya RK, Trivedi AK, Sanyal S, Baral R, Dormond O, et al. Chemokine receptor trio: CXCR3, CXCR4 and CXCR7 crosstalk via CXCL11 and CXCL12. Cytokine Growth Factor Rev. 2013 Feb;24(1):41-9. DOI: 10.1016/j.cytogfr.2012.08.00710.1016/j.cytogfr.2012.08.007Search in Google Scholar

19. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, O’Malley FP, et al. Tumoral Lymphocytic Infiltration and Expression of the Chemokine CXCL10 in Breast Cancers from the Ontario Familial Breast Cancer Registry. Clinical Cancer Research. 2013;19(2):336-46. DOI: 10.1158/1078-0432.CCR-11-331410.1158/1078-0432.CCR-11-3314Search in Google Scholar

20. Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007;110(9):3316-25. DOI: 10.1182/ blood-2007-05-08940910.1182/blood-2007-05-089409Search in Google Scholar

21. Okada T, Ngo VN, Ekland EH, Förster R, Lipp M, Littman DR, et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. The Journal of experimental medicine. 2002;196(1):65-75. DOI: 10.1084/jem.2002020110.1084/jem.20020201Search in Google Scholar

22. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later. Blood. 2011;118(13):3470-8. DOI: 10.1182/blood-2011-06-27561010.1182/blood-2011-06-275610Search in Google Scholar

23. Nagira M, Imai T, Yoshida R, Takagi S, Iwasaki M, Baba M, et al. A lymphocyte-specific CC chemokine, secondary lymphoid tissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. European Journal of Immunology. 1998;28(5):1516-23. DOI: 10.1002/ (SICI)1521-4141(199805)28:05<1516::AID-IMMU1516> 3.0.CO;2-J10.1002/(SICI)1521-4141(199805)28:05<1516::AID-IMMU1516>3.0.CO;2-JSearch in Google Scholar

24. Kunkel EJ, Butcher EC. Plasma-cell homing. Nature Reviews Immunology. 2003;3(10):822-9. DOI: 10.1038/nri120310.1038/nri1203Search in Google Scholar

25. Nannini PR, Borge M, Mikolaitis VC, Abreu C, Morande PE, Zanetti SR, et al. CCR4 expression in a case of cutaneous Richter’s transformation of chronic lymphocytic leukemia (CLL) to diffuse large B-cell lymphoma (DLBCL) and in CLL patients with no skin manifestations. European Journal of Haematology. 2011;87(1):80-6. DOI: 10.1111/j.1600-0609.2011.01613.x10.1111/j.1600-0609.2011.01613.xSearch in Google Scholar

26. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L, et al. Rules of chemokine receptor association with T cell polarization in vivo. Journal of Clinical Investigation. 2001;108(9):1331-9. DOI: 10.1172/ JCI20011354310.1172/JCI13543Search in Google Scholar

27. Cózar JM, Canton J, Tallada M, Concha A, Cabrera T, Garrido F, et al. Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunology, Immunotherapy. 2005;54(9):858-66. DOI: 10.1007/s00262-004-0646-110.1007/s00262-004-0646-1Search in Google Scholar

28. Svensson H, Olofsson V, Lundin S, Yakkala C, Björck S, Börjesson L, et al. Accumulation of CCR4+ CTLA-4hi FOXP3+ CD25hi regulatory T cells in colon adenocarcinomas correlate to reduced activation of conventional T cells. PloS one. 2012;7(2):e30695. DOI: 10.1371/journal.pone.003069510.1371/journal.pone.0030695Search in Google Scholar

29. Monserrat J, Ángel Sánchez M, de Paz R, Díaz D, Mur S, Reyes E, et al. Distinctive patterns of naïve/memory subset distribution and cytokine expression in CD4 T lymphocytes in ZAP-70 B-chronic lymphocytic patients. Cytometry Part B: Clinical Cytometry. 2013. DOI: 10.1002/cytob.2112010.1002/cytob.21120Search in Google Scholar

30. Ocana E, Delgado-Perez L, Campos-Caro A, Munoz J, Paz A, Franco R, et al. The prognostic role of CXCR3 expression by chronic lymphocytic leukemia B cells. Haematologica. 2007;92(3):349-56. DOI: 10.3324/haematol. 10649Search in Google Scholar

31. Jones D, Benjamin RJ, Shahsafaei A, Dorfman DM. The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. Blood. 2000;95(2):627-32.10.1182/blood.V95.2.627Search in Google Scholar

32. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S, et al. CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica. 2006;91(11):1489-97.Search in Google Scholar

33. Trentin L, Agostini C, Facco M, Piazza F, Perin A, Siviero M, et al. The chemokine receptor CXCR3 is expressed on malignant B cells and mediates chemotaxis. Journal of Clinical Investigation. 1999;104(1):115-21. DOI: 10.1172/JCI733510.1172/JCI7335Search in Google Scholar

34. Wong S, Fulcher D. Chemokine receptor expression in B-cell lymphoproliferative disorders. Leukemia & lymphoma. 2004;45(12):2491-6. DOI: 10.1080/1042819041000172344910.1080/10428190410001723449Search in Google Scholar

35. Cambien B, Karimdjee B, Richard-Fiardo P, Bziouech H, Barthel R, Millet M, et al. Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. British journal of cancer. 2009;100(11):1755-64. DOI: 10.1038/sj.bjc.660507810.1038/sj.bjc.6605078Search in Google Scholar

36. Pradelli E, Karimdjee-Soilihi B, Michiels JF, Ricci JE, Millet MA, Vandenbos F, et al. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. International Journal of Cancer. 2009;125(11):2586-94. DOI: 10.1002/ijc.2466510.1002/ijc.24665Search in Google Scholar

37. López-Giral S, Quintana NE, Cabrerizo M, Alfonso- Pérez M, Sala-Valdés M, de Soria VGG, et al. Chemokine receptors that mediate B cell homing to secondary lymphoid tissues are highly expressed in B cell chronic lymphocytic leukemia and non-Hodgkin lymphomas with widespread nodular dissemination. Journal of leukocyte biology. 2004;76(2):462-71. DOI: 10.1189/jlb.120365210.1189/jlb.1203652Search in Google Scholar

38. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Förster R, et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature. 2002;416(6876):94-9. DOI: 10.1038/416094a10.1038/416094aSearch in Google Scholar

39. Cha Z, Zang Y, Guo H, Rechlic JR, Olasnova LM, Gu H, et al. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol. 2013 Dec;34(6):3579-85. DOI: 10.1007/s13277-013-0937-210.1007/s13277-013-0937-2Search in Google Scholar

40. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nature immunology. 2001;2(12):1126-32. DOI: 10.1038/ni73510.1038/ni735Search in Google Scholar

41. Jadidi-Niaragh F, Yousefi M, Memarian A, Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, et al. Increased Frequency of CD8+ and CD4+ Regulatory T Cells in Chronic Lymphocytic Leukemia: Association with Disease Progression. Cancer investigation. 2013;31(2):121-31. DOI: 10.3109/07357907.2012.75611010.3109/07357907.2012.756110Search in Google Scholar

42. Scrivener S, Goddard R, Kaminski E, Prentice A. Abnormal T-cell function in B-cell chronic lymphocytic leukaemia. Leukemia & lymphoma. 2003;44(3):383-9. DOI: 10.1080/104281902100002999310.1080/1042819021000029993Search in Google Scholar

43. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C, et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood. 2007;110(9):3352-9. DOI: 10.1182/ blood-2007-04-08383210.1182/blood-2007-04-083832Search in Google Scholar

44. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal Bo M, Marconi D, et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer research. 2009;69(9):4001-9. DOI: 10.1158/0008-5472.CAN-08-417310.1158/0008-5472.CAN-08-4173Search in Google Scholar

45. Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563-74. DOI: 10.1182/ blood-2010-05-28498410.1182/blood-2010-05-284984Search in Google Scholar

46. Palamarchuk A, Efanov A, Nazaryan N, Santanam U, Alder H, Rassenti L, et al. 13q14 deletions in CLL involve cooperating tumor suppressors. Blood. 2010;115(19):3916-22. DOI: 10.1182/ blood-2009-10-24936710.1182/blood-2009-10-249367Search in Google Scholar

47. Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K, et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clinical Cancer Research. 2011;17(21):6778-90. DOI: 10.1158/1078-0432.CCR-11-078510.1158/1078-0432.CCR-11-0785Search in Google Scholar

48. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S, et al. NOTCH1 mutations in+ 12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of+ 12 CLL. Haematologica. 2012;97(3):437-41. DOI: 10.3324/haematol.2011.060129 10.3324/haematol.2011.060129Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo