1. bookVolume 22 (2014): Issue 1 (March 2014)
Journal Details
License
Format
Journal
eISSN
2284-5623
ISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Interaction between lifestyle factors and the XRCC1, XPD, and XRCC3 genetic variations modulates the risk for sporadic colorectal cancer

Published Online: 25 Mar 2014
Page range: 129 - 141
Journal Details
License
Format
Journal
eISSN
2284-5623
ISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background: Genetic variations, such as those affecting DNA repair genes, could represent susceptibility factors for sporadic colorectal cancer (CRC) as a result of their interaction with environmental factors. Materials and

methods: 80 female and 70 males patients diagnosed with sporadic CRC in the Surgical Clinic III Cluj were genotyped for Arg399Gln-XRCC1, Lys751Gln-XPD and Met241Thr-XRCC3 using PCR-RFLP methods. We also genotyped 100 females and 62 males, who formed the control group. Genotyping results were related to environmental risk factors, smoking habit and diet. Results: Male patients carriers of the Arg399Gln, Lys751Gln, Met241Thr had a 4.09 (95%CI[0.96-19.98],p=0.05)-fold, 5.95(95%CI[1.08-43.22],p=0.03)-fold and 3.73(95%CI[0.86- 18.53],p=0.05)- fold significantly increased risk to develop sporadic CRC if they smoked. A significantly increased risk for CRC was observed in females and males with high daily fried red meat intake, carriers of the Arg399Gln (OR 2.77 95%CI [1.34-6.82],p=0.015 and OR 8.64 95%CI[2.67-29.14],p<0.001), Lys751Gln (OR 4.12 95%CI[1.37-12.74],p=0.007 and OR 5.06 95%CI[1.4-19.02],p=0.006), Met241Thr (OR5.92 95%CI[2.21- 16.23],p<0.001 and OR 5.64 95%CI[1.52-21.7],p=0.022). Female patients with high fried red meat intake had a significantly higher risk to develop early-onset sporadic CRC if they were carriers of the Arg399Gln-XRCC1 (OR 5.14 95%CI[0.99-28.3],p=0.047), Thr241Met-XRCC3 (OR 6.67 95%CI[1.05-46.67],p=0.025) and Lys- 751Gln-XPD (OR 4.7 95%CI[0.99-23.32],p=0.034). Conclusions: In Romanians, the association between the mutated genotypes and environmental risk factors modulates the risk for sporadic CRC. Smoking in association with the Arg399Gln-XRCC1 genetic variation influences the early onset of sporadic colorectal cancer in females. Diet rich in fried red meat intake associated with Arg399Gln-XRCC1, Lys751Gln-XPD and Thr241Met- XRCC3 genetic variations significantly influences the early onset of sporadic colorectal cancer in females.

Keywords

Cuvinte cheie

1. Reid ME, Marshall JR, Roe D, Lebowitz M, Alberts D, Battacharyya AK, et al. Smoking exposure as a risk factor for prevalent and recurrent colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 2003;12(10):1006-11.Search in Google Scholar

2. Anderson JC, Attam R, Alpern Z, Messina CR, Hubbard P, Grimson R, et al. Prevalence of colorectal neoplasia in smokers. Am J Gastroenterol. 2003;98(12):2777-83. DOI: 10.1111/j.1572-0241.2003.08671.x10.1111/j.1572-0241.2003.08671.xSearch in Google Scholar

3. Jacobson JS, Neugut AI, Murray T, Garbowski GC, Forde KA, Treat MR, et al. Cigarette smoking and other behavioral risk factors for recurrence of colorectal adenomatous polyps. Cancer Causes Control. 1994;5(3):215-220. DOI: 10.1007/BF0183023910.1007/BF01830239Search in Google Scholar

4. Ye YN, Wu WK, Shin VY, Cho CH. A mechanistic study of colon cancer growth promoted by cigarette smoke extract. Eur J Pharmacol. 2005;519(1-2):52-7. DOI: 10.1016/j.ejphar.2005.07.00910.1016/j.ejphar.2005.07.009Search in Google Scholar

5. Ye YN, Wu WK, Shin VY, Bruce IC, Wong BC, Cho CH. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis. 2005;26(4):827-34. DOI: 10.1093/carcin/ bgi012Search in Google Scholar

6. Kotzev I, Mirchev M, Manevska B, Ivanova I, Kaneva M. Risk and protective factors for development of colorectal polyps and cancer (Bulgarian experience). Hepatogastroenterology. 2008;55(82-83):381-7.Search in Google Scholar

7. Lampe JW. Diet, genetic polymorphisms, detoxification and health risks. Altern Ther Health Med. 2007;13(2):S108-11.Search in Google Scholar

8. Sørensen M, Autrup H, Olsen A, Tjønneland A, Overvad K, Raaschou-Nielsen O. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Lett. 2008;266 (2):186-193. DOI: 10.1016/j. canlet.2008.02.046Search in Google Scholar

9. Brooks PJ, Theruvathu JA. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 2005;35(3):187-193. DOI: 10.1016/j.alcohol. 2005.03.009Search in Google Scholar

10. Lechman AR. The xeroderma pigmentosum group D (XPD) gene:one gene, two functions, three diseases. Genes Dev. 2001;15(1):15-23. DOI: 10.1101/ gad.85950110.1101/gad.859501Search in Google Scholar

11. Matullo G, Palli D, Peluso M, Guarrera S, Carturan S, Celentano E, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and 32P-DNA adducts in a sample of healthy subjects. Carcinogenesis. 2001;22(9):1437-45. DOI: 10.1093/carcin/22.9.143710.1093/carcin/22.9.1437Search in Google Scholar

12. Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature. 1993;365(6449):852-5. DOI: 10.1038/365852a010.1038/365852a0Search in Google Scholar

13. Cui X, Brenneman M, Meyne J, Oshimura M, Goodwin EH, Chen DJ. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutat Res. 1999;434(2):75-88. DOI: 10.1016/S0921-8777(99)00010-510.1016/S0921-8777(99)00010-5Search in Google Scholar

14. Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, et al. XPD polymorphisms:effects on DNA repair profiency. Carcinogenesis. 2000;21(4):551-5. DOI: 10.1093/carcin/21.4.55110.1093/carcin/21.4.551Search in Google Scholar

15. Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms:effects on aflatoxid B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999;59(11):2557-61.Search in Google Scholar

16. Abdel-Rahman SZ, Soliman AS, Bondy ML, Omar S, El-Badawy SA, Khaled HM, et al. Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett. 2000;159(1):79-86. DOI: 10.1016/S0304-3835(00)00537-110.1016/S0304-3835(00)00537-1Search in Google Scholar

17. Yeh CC, Sung FC, Tang R, Chang-Chieh CR, Hsieh LL. Polymorphisms of the XRCC1, XRCC3 and XPD genes and colorectal cancer risk:a case-control study in Taiwan. BMC Cancer. 2005;5:12-17. DOI: 10.1186/1471-2407-5-1210.1186/1471-2407-5-1254904115679883Search in Google Scholar

18. Mort R, McEwan C, Melton DW. Lack of involvement of nucleotide excision repair gene polymorphisms in colorectal cancer. Br J Cancer. 2003;89(2):333-7. DOI: 10.1038/sj.bjc.660106110.1038/sj.bjc.6601061239425112865926Search in Google Scholar

19. Stern MC, Butler LM, Corral R, Joshi AD, Yuan JM, Koh WP, et al. Polyunsaturated fatty acids, DNA repair nucleotide polymorphisms and colorectal cancer in the Singapore Chindws health study. J Nutrigenet Nutrigenomics. 2009;2(6):273-9. DOI: 10.1159/00030846710.1159/000308467294183720559012Search in Google Scholar

20. Jelonek K, Gdowicz-Klosok A, Pietrowska M, Borkowska M, Korfanty J, Rzeszowska-Wolny J, et al. Association between single nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a Polish population. J Appl Genet. 2010;51(3):343-52. DOI: 10.1007/BF0320886510.1007/BF0320886520720310Search in Google Scholar

21. Kabzińsk J, Przybyłowsk K, Mik M, Sygut A, Dziki L, Dziki A. An association of Arg399Gln polymorphism of XRCC1 gene with a risk of colorectal cancer. Polski Przegląd Chirurgiczny. 2010;82 (12):677-80. DOI: 10.2478/v10035-010-0103-010.2478/v10035-010-0103-0Search in Google Scholar

22. Stern MC, Siegmund KD, Corral R, Haile RW. XRCC1 and XRCC3 polymorphisms and their role as effect modifiers of unsaturated fatty acids and antioxidant intake on colorectal adenomas risk. Cancer Epidemiol Biomarkers Prev. 2005;14(3):609-15. DOI: 10.1158/1055-9965.EPI-04-018910.1158/1055-9965.EPI-04-018915767338Search in Google Scholar

23. Bigler J, Ulrich CM, Kawashima T, Whitton J, Potter JD. DNA repair polymorphisms and risk of colorectal adenomatous or hyperplastic polyps. Cancer Epidemiol Biomarkers Prev. 2005;14 (11):2501-8. DOI: 10.1158/1055-9965.EPI-05-027010.1158/1055-9965.EPI-05-027016284370Search in Google Scholar

24. Skjelbred CF, Saebo M, Wallin H. Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. BMC Cancer. 2006;6(1):67. DOI: 10.1186/1471-2407-6-175 DOI: 10.1186/1471-2407-6-6710.1186/1471-2407-6-175153384316817948Search in Google Scholar

25. Huang W-Y, Berndt SI, Kang D, Chatterjee N, Chanock SJ, Yeager M, et al. Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomarkers Prev. 2006;15(2):306-11. DOI: 10.1158/1055-9965.EPI-05-075110.1158/1055-9965.EPI-05-075116492920Search in Google Scholar

26. Improta G, Sgambato A, Bianchino G, Zupa A, Grieco V, La Torre G, et al. Polymorphisms of the DNA repair genes XRCC1 and XRCC3 and risk of lung and colorectal cancer: a case-control study in a Southern Italian population. Anticancer Res. 2008;28(5B):2941-6.Search in Google Scholar

27. Yarosh DB, Pena A, Brown DA. DNA repair gene polymorphisms affect cytotoxicity in the National Cancer Institute Human Tumour Cell Line Screening Panel. Biomarkers. 2005;10(2-3):188-202. DOI: 10.1080/1354750050013873210.1080/1354750050013873216076732Search in Google Scholar

28. Stern MC, Siegmund KD, Conti DV, Corral R, Haile RW. XRCC1, XRCC3, and XPD Polymorphisms as Modifiers of the Effect of Smoking and Alcohol on Colorectal Adenoma Risk. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2384-90. DOI: 10.1158/1055-9965.EPI-06-038110.1158/1055-9965.EPI-06-038117164360Search in Google Scholar

29. Taylor RM, Thistlethwaite A, Caldecott KW. Central role for the XRCC1 BRCT I domain in mammalian DNA single-strand break repair. Mol Cell Biol. 2002;22(8):2556-63. DOI: 10.1128/MCB.22.8.2556-2563.200210.1128/MCB.22.8.2556-2563.2002Search in Google Scholar

30. Takanami T, Nakamura J, Kubota Y, Horiuchi S. The Arg280His polymorphism in X-ray repair cross-complementingg ene 1 impairs DNA repair ability. Mutat Res. 2005;582:135-45. DOI: 10.1016/j.mrgentox. 2005.01.007Search in Google Scholar

31. Benhamou S, Sarasin A. ERCC2 /XPD gene polymorphisms and lung cancer:a HuGE review. Am J Epidemiol. 2005;161(1):1-14. DOI: 10.1093/aje/kwi01810.1093/aje/kwi018Search in Google Scholar

32. Savas S, Ozcelik H. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the NsSNPs. BMC Cancer. 2005;5:107. DOI: 10.1186/1471-2407-5-10710.1186/1471-2407-5-107Search in Google Scholar

33. Ladiges W, Wiley J, MacAuley A. Polymorphisms in the DNA repair gene XRCC1 and age-related disease. Mech Ageing Dev. 2003;124(1):27-32. DOI: 10.1016/ S0047-6374(02)00166-510.1016/S0047-6374(02)00166-5Search in Google Scholar

34. Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ. XRCC2 and XRCC3 polymorphisms are not associated with risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2004;13(6):1090-1. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo