1. bookVolume 25 (2017): Issue 4 (October 2017)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Beta-lactam and quinolone resistance markers in uropathogenic strains isolated from renal transplant recipients

Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Our objectives were to investigate the extended-spectrum beta-lactamases (ESBLs) and carbapenemases (CR) genetic determinants and to assess the association between ESBL production and quinolone resistance in bacterial strains isolated from renal transplant recipients with urinary tract infections. Material and methods: A number of 30 isolates were recovered from urine specimens of patients with renal transplant from October 2015 to March 2016. The isolates were analyzed for ESBL production using double disc synergy test and for CR production by the Hodge test. Phenotypically confirmed isolates were screened by PCR for the identification of ESBL, CR and fluoroquinolone resistance genes. Results: The 30 clinical bacterial strains isolated from urinary tract infections in renal transplant recipients were identified as Klebsiella pneumoniae (17), Pseudomonas aeruginosa (7), Morganella morganii (2), Escherichia coli (2), Edwardsiella tarda (1) and Enterobacter cloacae (1). Out of them, 22 isolates were ESBL producers and 20 multi-drug resistant (MDR) (i.e., 13 K. pneumoniae and 7 P. aeruginosa strains). More than half of the ESBL clinical strains (14/22, 63.63%) revealed at least one ESBL gene, the most frequent being blaCTX-M type (18/22, 81.81%), either alone (4/22, 18.18%) or in combination with another ESBL gene (17/22, 77.27%), followed by blaTEM (13/22, 59.09%). The blaOXA-48 was present in 10 isolates (33.33%). The most frequent association of ESBLs and CR genes (5/14, 35.71%) was revealed by blaCTX-M- blaTEM - blaOXA-48, encountered particularly among K. pneumoniae isolates (4/17, 23.52%). The qnrB gene was identified in five strains, i.e. one P. aeruginosa ESBL isolate (expressing the blaCTX-M gene) and four K. pneumoniae ESBL isolates (harboring the blaCTX-M - blaTEM genes combination). Conclusions: The uropathogenic strains isolated from renal transplant recipients exhibited high rates of MDR and beta-lactam resistance. The selective pressure exerted by quinolones could enable uropathogenic bacteria to acquire resistance to this class of antibiotics.

Keywords

1. Kritikos A, Manuel O. Bloodstream infections after solid-organ transplantation. Virulence. 2016;7(3):329-40. DOI: 10.1080/21505594.2016.1139279 10.1080/21505594.2016.1139279487168226766415Open DOISearch in Google Scholar

2. Parasuraman R, Julian K, the AST Infectious Diseases Community of Practice. Urinary Tract Infections in Solid Organ Transplantation. Am J Transplant. 2013;13:327-36. DOI: 10.1111/ajt.12124 10.1111/ajt.1212423465025Open DOISearch in Google Scholar

3. Freire MP, Antonopoulos IM, Piovesan AC, Moura ML, de Paula FJ, Spadão F, et al. Amikacin prophylaxis and risk factors for surgical site infection after kidney transplantation. Transplantation. 2015 Mar;99(3):521-7. DOI: 10.1097/TP.0000000000000381 10.1097/TP.000000000000038125254907Open DOISearch in Google Scholar

4. Vidal E, Torre-Cisneros J, Blanes M, Montejo M, Cervera C, Aguado JM, et al. Spanish Network for Research in Infectious Diseases (REIPI). Bacterial urinary tract infection after solid organ transplantation in the RESITRA cohort. Transpl Infect Dis. 2012 Dec;14(6):595-603.DOI: 10.1111/j.1399-3062.2012.00744.x10.1111/j.1399-3062.2012.00744.x22650416Open DOISearch in Google Scholar

5. Pinheiro HS, Mituiassu AM, Carminatti M, Braga AM, Bastos MG. Urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in kidney transplant patients. Transplant Proc. 2010;42(2):486-7. DOI: 10.1016/j.transproceed. 2010.02.002 10.1016/j.transproceed.2010.02.00220304172Open DOISearch in Google Scholar

6. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015. Search in Google Scholar

7. Efrekar RF, Hosseini-Mazinani SM, Ghandili S, Hamraz M, Zamani S. PCR detection of plasmid mediated TEM, SHV and AmpC β-lactamases in community and nosocomial urinary isolates of Escherichia coli. Iranian J Biotech. 2005;3(1):48-54. Search in Google Scholar

8. Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43:1281-4. 10.1128/AAC.43.5.12818926010223953Search in Google Scholar

9. Israil A, Chifiriuc C, Palade G, Cotar A. Clinical and bacteriological aspects of bacterial infections associated to abdominal surgical emergencies. Ars Docenti Publ. House. 2013:150. Search in Google Scholar

10. Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119-23. DOI: 10.1016/j.diagmicrobio.2010.12.002 10.1016/j.diagmicrobio.2010.12.00221398074Search in Google Scholar

11. Jiang X, Ni Y, Jiang Y, Yuan F, Han L, Li M. Outbreak of infection caused by Enterobacter cloacae producing the novel VEB-3 beta-lactamase in China. J Clin Microbiol. 2005;43:826-31. DOI: 10.1128/JCM.43.2.826-831.2005 10.1128/JCM.43.2.826-831.200554804115695687Open DOISearch in Google Scholar

12. Agnello M, Wong-Beringer A. Differentiation in quinolone resistance by virulence genotype in Pseudomonas aeruginosa. PLoS ONE. 2012;7(8):e42973. DOI: 10.1371/journal.pone.0042973 10.1371/journal.pone.0042973341445722905192Search in Google Scholar

13. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60(2): 394-397. DOI: 10.1093/jac/dkm204 10.1093/jac/dkm20417561500Open DOISearch in Google Scholar

14. Chuang P, Parikh CR, Langone A. Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clin Transplant. 2005;19: 230-5. DOI: 10.1111/j.1399-0012.2005.00327.x 10.1111/j.1399-0012.2005.00327.xOpen DOISearch in Google Scholar

15. de Souza RM, Olsburgh J. Urinary tract infection in the renal transplant patient. Nat Clin Pract Nephrol. 2008;4:252-64. DOI: 10.1038/ncpneph0781 10.1038/ncpneph0781Open DOISearch in Google Scholar

16. Naber KG, Bergman B, Bishop MC, Bjerklund-Johansen TE, Botto H, Lobel B, et al. Urinary Tract Infection (UTI) Working Group of the Health Care Office (HCO) of the European Association of Urology (EAU). EAU guidelines for the management of urinary and male genital tract infections. Urinary Tract Infection (UTI)Working Group of the Health Care Office (HCO) of the European Association of Urology (EAU). EurUrol. 2001 Nov;40(5):576-88. DOI: 10.1159/000049840 10.1159/000049840Open DOISearch in Google Scholar

17. Fox BC, Sollinger HW, Belzer FO, Maki DG. A prospective, randomized, double-blind study of trimethoprim- sulfamethoxazole for prophylaxis of infection in renal transplantation: clinical efficacy, absorption of trimethoprim-sulfamethoxazole, effects on the microflora, and the cost-benefit of prophylaxis. Am J Med. 1990 Sep;89(3):255-74. DOI: 10.1016/0002-9343(90)90337-D 10.1016/0002-9343(90)90337-Open DOISearch in Google Scholar

18. Säemann M, Hörl WH. Review Urinary tract infection in renal transplant recipients. Eur J Clin Invest. 2008;38 Suppl 2:58-65. DOI: 10.1111/j.1365-2362.2008.02014.x 10.1111/j.1365-2362.2008.02014.x18826483Open DOISearch in Google Scholar

19. Gavriliu L, Benea O, Benea S. Antimicrobial resistance temporal trend of Klebsiella pneumoniae isolated from blood . Journal of Medicine and Life. 2016; 9(4):419-23. Search in Google Scholar

20. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):1162-71. DOI: 10.1086/319757 10.1086/31975711283805Search in Google Scholar

21. Linares L, Cervera C, Cofán F, Lizaso D, Marco F, Ricart MJ, et al. Risk factors for infection with extended- spectrum and AmpC beta-lactamase-producing gram-negative rods in renal transplantation. Am J Transplant. 2008 May;8(5):1000-5. DOI: 10.1111/j.1600-6143.2008.02197.x 10.1111/j.1600-6143.2008.02197.x18727176Open DOISearch in Google Scholar

22. Valera B, Gentil MA, Cabello V, Fijo J, Cordero E, Cisneros JM. Epidemiology of urinary infections in renal transplant recipients. Transplant Proc. 2006;38(8):2414-5. DOI: 10.1016/j.transproceed.2006.08.018 10.1016/j.transproceed.2006.08.01817097953Search in Google Scholar

23. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Pendyala S, DebRoy C, et al. Escherichia coli Sequence Type ST131 as an Emerging Fluoroquinolone-Resistant Uropathogen among Renal Transplant Recipients. Antimicrobial Antimicrob Agents Chemother. 2010;54(1):546-50.DOI: 10.1128/AAC.01089-09 10.1128/AAC.01089-09279847519917759Open DOISearch in Google Scholar

24. Choi SU, Lee JH, Oh CK, Shin GT, Kim H, Kim SJ, Kim SI. Clinical significance of prophylactic antibiotics in renal transplantation.Transplant Proc 2013;45(4):1392-5. DOI: 10.1016/j.transproceed.2012.10.059 10.1016/j.transproceed.2012.10.05923726580Open DOISearch in Google Scholar

25. Kader AA, Kumar A. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general hospital. Ann Saudi Med. 2005;25(3):239-42. 10.5144/0256-4947.2005.239Search in Google Scholar

26. Székely E, Damjanova I, Jánvári L, Vas KE, Molnar S, Bilca DV, Löriczi LK, Tóth A. First description of bla(NDM-1), bla(OXA-48), bla(OXA-181) producing Enterobacteriaceae strains in Romania. Int J Med Microbiol. 2013;303(8):697-700. DOI: 10.1016/j. ijmm.2013.10.001 Search in Google Scholar

27. Czobor I, Gheorghe I, Banu O, Velican A, Lazăr V, Mihăescu G, Chifiriuc M.C. ESBL genes in Multi Drug Resistant Gram negative strains isolated in a one year survey from an Intensive Care Unit in Bucharest, Romania. Roumanian Biotechnological Letters. 2014;19(4):9553-6. Search in Google Scholar

28. Mereuță AI, Bădescu AC, Dorneanu OS, Iancu LS, Tuchiluș CG. Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from Iași, România. Rev Romana Med Lab. 2013; 21(4): 389-396. DOI: 10.2478/ rrlm-2013-0035 10.2478/rrlm-2013-0035Open DOISearch in Google Scholar

29. Bodro M, Sanclemente G, Lipperheide I, Allali M, Marco F, Bosch J, et al. Impact of antibiotic resistance on the development of recurrent and relapsing symptomatic urinary tract infection in kidney recipients. Am J Transplant. 2015 Apr;15(4):1021-7. DOI: 10.1111/ ajt.13075 10.1111/ajt.13075Search in Google Scholar

30. Vahaboglu H, Oztürk R, Aygün G, Coşkunkan F, Yaman A, Kaygusuz A, et al. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother. 1997;41(10):2265-9.10.1128/AAC.41.10.2265Search in Google Scholar

31. Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-pectrum beta-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis. 2002; 34(5):603-11. DOI: 10.1086/338786 10.1086/338786Open DOISearch in Google Scholar

32. Bouchillon S, Hoban DJ, Badal R, Hawser S. Fluoroquinolone Resistance Among Gram-Negative Urinary Tract Pathogens: Global Smart Program Results, 2009-2010. Open Microbiol J. 2012;6:74-78. DOI: 10.2174/1874285801206010074 10.2174/1874285801206010074Open DOISearch in Google Scholar

33. Azap Ö, Togan T,Yesilkaya A, Arslan H, Haberal M. Antimicrobial susceptibilities of uropathogen Escherichia coli in renal transplant recipients: dramatic increase in ciprofloxacin resistance.Transplant Proc. 2013;45(3):956 - 957. DOI: 10.1016/j.transproceed. 2013.03.006 10.1016/j.transproceed.2013.03.006Open DOISearch in Google Scholar

34. Lagacé-Wiens PR, Nichol KA, Nicolle LE, DeCorby MR, McCracken M, Alfa MJ, Zhanel GG. ESBL genotypes in fluoroquinolone-resistant and fluoroquinolone- susceptible ESBL-producing Escherichia coli urinary isolates in Manitoba. Can J Infect Dis Med Microbiol. 2007;18(2):133-7. DOI: 10.1155/2007/848194 10.1155/2007/848194Open DOISearch in Google Scholar

35. Jacoby GA, Sutton L. Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991;35(1):164-9. DOI: 10.1128/AAC.35.1.164 10.1128/AAC.35.1.164Open DOISearch in Google Scholar

36. Usein CR, Tatu-Chiţoiu D, Nica M, Ciontea SA, Palade AM, Condei M, Damian M. Characteristics of Romanian fluoroquinolone-resistant human clinical Escherichia coli isolates. Roum Arch Microbiol Immunol. 2008;67(1-2):23-9. 10.1016/S0924-8579(07)71700-4Search in Google Scholar

37. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf. Search in Google Scholar

38. www.ecdc.europa.eu. Antimicrobial resistance surveillancein Europe 2015. Search in Google Scholar

39. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdfSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo