1. bookVolume 25 (2017): Issue 4 (October 2017)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

The frequency of shiga-like toxin (stx1 and stx2) and EHEC-hlyA in food by multiplex PCR

Published Online: 07 Nov 2017
Page range: 317 - 326
Received: 02 Mar 2017
Accepted: 02 Jul 2017
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Aim: The aim of the present study was to determine the frequency of shiga-like toxin (stx1 and stx2) and drug resistance profiles food-borne Escherichia coli O157:H7 in Hatay province, Turkey. Methods: The presence of the virulence genes (stx1, stx2, hlyA) in a total of 150 E.coli isolates were studied with multiplex PCR. Results: A total of 327 salad samples were analyzed. E. coli O157:H7 was detected in 150 (45.8 %) out of 327 analyzed samples. Of these 150 isolates, the presence of hly-A gene was detected in 32 (21.3%) E.coli isolates. A total of five (15.6%) isolates in this 32 hlyA positive isolates had stx2 gene, two (6.3%) of them had stx1 gene and one (3.1%) of the isolates was found to be positive for both stx1 and stx2 genes. It was found that all E.coli O157:H7 isolates were resistant to erythromycin. While the highest rate of antibiotic resistance was observed for ampicillin (68.8%), no antibiotic resistance against cefuroxime, ciprofloxacin and cephaperasone was identified. Conclusions: The results obtained in our province showed that E.coli strains isolated from salad samples were found to have some important virulence genes such as stx1, stx2, and hlyA. The stx2 frequency was found to be higher than stx1 frequency. Also, it was observed that there was not any significant correlation between drug resistance profiles and presence of toxin genes in E.coli O157:H7 strains. As a result, increasing frequency of STEC O157 serotype among foodborne pathogens is a growing public health problem.

Keywords

1. Nawas T, Mazumdar RM, Das S, Nipa MN, Islam S, Bhuiyan HR, et al. Microbiological Quality and Antibiogram of E. coli, Salmonella and Vibrio of Salad and Water from Restaurants of Chittagong. J. Environ. Sci. & Natural Resources 2012;5(1):159-66. DOI: 10.3329/jesnr.v5i1.11571 10.3329/jesnr.v5i1.11571Open DOISearch in Google Scholar

2. Pennington H. Escherichia coli O157. Lancet 2010;376(9750):1428-35. DOI: 10.1016/S0140-6736(10)60963-4 10.1016/S0140-6736(10)60963-4Open DOISearch in Google Scholar

3. Witold AF, Carolyn JH. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection. Foodborne Pathog Dis. 2011;8(4):465-87. DOI: 10.1089/fpd.2010.0673 10.1089/fpd.2010.0673Open DOISearch in Google Scholar

4. Marder EP, Garman KN, Ingram LA, Dunn JR. Multistate Outbreak of Escherichia coli O157:H7 Associated with Bagged Salad. Foodborne Path. Dis. 2014; 11(8):593-5. DOI: 10.1089/fpd.2013.1726 10.1089/fpd.2013.1726Search in Google Scholar

5. Baker CA, Rubinelli PM, Park SH, Carbonero F, Ricke SC. Shiga toxin-producing Escherichia coli in food: Incidence, ecology, and detection strategies. Food Control 2016; 59:407-19. DOI: 10.1016/j.foodcont.2015.06.011 10.1016/j.foodcont.2015.06.011Open DOISearch in Google Scholar

6. Bentancor A, Rumi MV, Carbonari C, Gerhardt E, Larzábal M, Vilte DA, et al. Profile of shiga toxin-producing Escherichia coli strains isolated from dogs and cats and genetic relationships with isolates from cattle, meat and humans. Vet Microbiol. 2012; 156; (3-4): 336-342. DOI: 10.1016/j.vetmic.2011.10.03010.1016/j.vetmic.2011.10.030Open DOISearch in Google Scholar

7. Gordillo R, Cordoba JJ, Andrade MJ, Luque MI, Rodríguez M. Development of PCR assays for detection of Escherichia coli O157:H7 in meat products. Meat Sci 2011;88(4):767-73. DOI: 10.1016/j.meatsci. 2011.03.011 10.1016/j.meatsci.2011.03.011Open DOISearch in Google Scholar

8. Bandyopadhyay S, Lodh C, Rahaman H, Bhattacharya D, Bera AK, Ahmed FA, et al. Characterization of shiga toxin producing (STEC) and enteropathogenic Escherichia coli (EPEC) in raw yak (Poephagus grunniens) milk and milk products. Res Vet Sci. 2012;93(2):604-10. DOI: 10.1016/j.rvsc.2011.12.011 10.1016/j.rvsc.2011.12.011Search in Google Scholar

9. Russo LM, Melton-Celsa AR, Smith MJ, O’Brien AD. Comparisons of native Shiga toxins (Stxs) type 1 and 2 with chimeric toxins indicate that the source of the binding subunit dictates degree of toxicity. PLoS One 2014;9:e93463. DOI: 10.1371/journal.pone.0093463 10.1371/journal.pone.0093463Search in Google Scholar

10. Chaves BD, Echeverry A, Miller MF, Brashears MM. Prevalence of molecular markers for Salmonella and Shiga toxigenic Escherichia coli (STEC) in whole-muscle beef cuts sold at retail markets. Food Control 2015;50:497-501. DOI: 10.1016/j.foodcont. 2014.09.024 Search in Google Scholar

11. Su H, Ma Q, Shang K. Gold nanoparticles as colorimetric sensor: A case study on E. coli O157:H7 as a model for Gram-negative bacteria. Sensor Actuat B-Chem 2012;161:298-303. DOI: 10.1016/j.snb.2011.10.035 10.1016/j.snb.2011.10.035Open DOISearch in Google Scholar

12. Bandyopadhyay S, Lodh C, Rahaman H, Bhattacharya D, Bera AK, Ahmed FA, et al. Characterization of shiga toxin producing (STEC) and enteropathogenic Escherichia coli (EPEC) in raw yak (Poephagus grunniens) milk and milk products. Res Vet Sci. 2012;93(2):604-10. DOI: 10.1016/j.rvsc.2011.12.011 10.1016/j.rvsc.2011.12.011Search in Google Scholar

13. Russo LM, Melton-Celsa AR, Smith MJ, O’Brien AD. Comparisons of native Shiga toxins (Stxs) type 1 and 2 with chimeric toxins indicate that the source of the binding subunit dictates degree of toxicity. PLoS One 2014;9:e93463. DOI: 10.1371/journal.pone.0093463 10.1371/journal.pone.0093463Search in Google Scholar

14. Bai J, Shi X, Nagaraja TG. A multiplex PCR procedure for the detection of six major virulence genes in Escherichia coli O157:H7. J Microbiol Methods, 2010; 82: 85-9. DOI: 10.1016/j.mimet.2010.05.003 10.1016/j.mimet.2010.05.003Open DOISearch in Google Scholar

15. Unsal C. Occurance E.coli O157: H7 in meat consumed in Erzurum. Thesis, Ataturk University, 2007. Search in Google Scholar

16. Ertas N, Gonulalan Z, Yildirim Y, Karadal F, Abay S, Al S. Detection of Escherichia coli O157:H7 using immunomagnetic separation and mPCR in Turkish foods of animal origin. Lett Appl Microbiol. 2013;57(4):373-9. 10.1111/lam.12124Search in Google Scholar

17. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Search in Google Scholar

18. Pizarro MA, Orozco JH, Degarbo SM, Calderon AE, Nardello AL, Laciar A, et al. Virulence profiles of Shiga Toxin-Producing Esch¬erichia coli and other potentially diarrheagenic E.coli of bovine origin, in Mendo za, Argentina. Braz J Microbiol. 2013;44(4):1173-80. DOI: 10.1590/S1517-8382201400500001010.1590/S1517-83822014005000010Open DOISearch in Google Scholar

19. Clinical and Laboratory Standards Institute. Performance standarts for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement, M02-A12, M07-A10 and M11-A8, 2015. Search in Google Scholar

20. Trevisani M, Mancusi R, Delle Donne G, Bacci C, Bassi L, Bonardi S. Detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) in bovine dairy herds in Northern Italy. Int. J. Food Microbiol. 2014;184:45-9. DOI: 10.1016/j.ijfoodmicro.2013.12.033 10.1016/j.ijfoodmicro.2013.12.033Open DOISearch in Google Scholar

21. Edelstein M, Sundborger C, Hergens MP, Ivarsson S, Dryselius R, Insulander M, et al. Barriers to Trace-back in a Salad-associated EHEC Outbreak, Sweden, June 2013. PLoS Currents 2014. DOI: 10.1371/currents.outbreaks. 80bbab3af3232be0372ea0e904dcd1fe 10.1371/currents.outbreaks.80bbab3af3232be0372ea0e904dcd1feOpen DOISearch in Google Scholar

22. Bingol EB, Colak H, Hampikyan H. Presence of enterotoxin and verotoxin inTurkish cheeses sold in Istanbul. Turk J Vet Anim Sci, 2012;36(4):424-32. Search in Google Scholar

23. Kesava Naidu G, RGN GSM, Shivannavar CT. Detection of Shiga toxin genes (stx1 & stx2) and molecular characterization of shiga-toxigenic Escherichia coli isolated from divers sources in Gulbarga region, India. Pharmacophore, 2011;2(5):253-65. Search in Google Scholar

24. Akhi MT, Ostadgavahi AT, Ghotaslou R, Asgharzadeh M, Pirzadeh T, Sorayaei Sowmesarayi V, Memar MY. Detection, Virulence Gene Assessment and Antibiotic Resistance Pattern of O157 Enterohemorrhagic Escherichia coli in Tabriz, Iran. Jundishapur J Microbiol. 2015;8(11):e2. DOI: 10.5812/jjm.25317 10.5812/jjm.25317Open DOISearch in Google Scholar

25. Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, et al. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geo¬graphic divergence. Appl Environ Microbiol. 2013;79(16):5050-8. DOI: 10.1128/AEM.01525-13 10.1128/AEM.01525-13Search in Google Scholar

26. Vicentei HIG, do AmaralI LA, Cerqueira AMF. Shigatoxigenic Esch¬erichia coli serogroups O157, O111 and O113 in feces, water and milk samples from dairy farms. Braz J Microbiol. 2005; 36(3):217-22. DOI: 10.1590/S1517-83822005000300003 10.1590/S1517-83822005000300003Open DOISearch in Google Scholar

27. Leotta GA, Miliwebsky ES, Chinen I, Espinosa EM, Azzopardi K, Tennant SM, et al. Characterisation of Shiga toxin-producing Escherichia coli O157 strains isolated from humans in Argentina, Australia and New Zealand. BMC Microbiol. 2008;8:46. DOI: 10.1186/1471-2180-8-46 10.1186/1471-2180-8-46Open DOISearch in Google Scholar

28. O’Brien M, Hunt K, McSweeney S, Jordan K. Occurrence of foodborne pathogens in Irish farmhouse cheese. Food Microbiol 2008;26:910-4. DOI: 10.1016/j.fm.2009.06.009 10.1016/j.fm.2009.06.009Open DOISearch in Google Scholar

29. CDC, 2016; https://www.cdc.gov/ecoli/2016/o121-06-16/. Multistate Outbreak of Shiga toxin-producing Escherichia coli Infections (Final Update), 2016. Search in Google Scholar

30. Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, et al. Freshfruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 2010;12:2385-97. DOI: 10.1111/j.1462-2920.2010.02297.x 10.1111/j.1462-2920.2010.02297.xOpen DOISearch in Google Scholar

31. Wang H, Feng H, Luo Y. Microbial reduction and storage quality of fresh-cut cilantrowashed with acidic electroyzed water and aqueous ozone. Food Res Int 2004;37:949-56. DOI: 10.1016/j.foodres.2004.06.004 10.1016/j.foodres.2004.06.004Open DOISearch in Google Scholar

32. Allende A, McEvoy J, Tao Y, Luo Y. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite and citric acid on Escherichia coli O157:H7 and naturalmicroflora on fresh-cut cilantro. Food Control 2009;20:230-4. DOI: 10.1016/j.foodcont. 2008.05.009 10.1016/j.foodcont.2008.05.009Open DOISearch in Google Scholar

33. Chauret C. Survival and control of Escherichia coli O157:H7 in foods, beverages, soil and water. Virulence. 2011;2(6):593-601. DOI: 10.4161/viru.2.6.18423 10.4161/viru.2.6.18423Open DOISearch in Google Scholar

34. http://www.foodsafety.govt.nz/elibrary/industry/E.coli-Organism_Invades.pdf. E. coli O157:H7, accessing date 27.02.2017.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo