The object of this study is a multicriteria transport problem, being stated for availability of several means of cargo delivery, meaning a multimodal transport problem. The optimization criteria of the multimodal transport problem described above are two objective functions of minimizing total transportation costs and level of transport risks. Three types of transport were selected for research: automobile, rail and river (inland waterway). The results of the study lay the foundation for development of a new valid algorithm for solving multimodal transport problems like multi-criteria optimization ones. The main advantage of such an algorithm lies in its higher potential convergence rate compared to classical numerical optimization methods, which now are predominantly used to solve the problems of this type. This advantage may not be decisive, but it appears to be at least quite an important argument when choosing the method of realization for two-criteria multimodal transport problems earlier considered, especially, in case of a large dimension. Moreover, the algorithm described in the work can be applied to similar problems with any number of types of transport and optimization criteria.
The paper describes a mixed reality environment for testing highly automated vehicle functions. The proposed Scenario-inthe-Loop test system connects real-time computer simulation with real elements being applicable at automotive proving ground. The paper outlines necessary hardware and software requirements and proposes basic system architecture. The limitation and bottleneck of the system are also identified: latency of the wireless communication constraints the accuracy of the test system. However, the presented framework can contribute to efficient development, testing and validation of automated cars. The Scenario-In-The-Loop architecture has also been justified by real-world demonstration using an experimental 5G New Radio network technology.
This study provides with a safety assessment of the pedestrian’s crash data in one of the largest cities of the state of Michigan, Grand Rapids. Crash data reviewed included a 9-year period between years 2010 and 2018. Crash clusters with largest number of accidents were selected to perform analysis based on the normalization of crash with population (using Census Bureau information). Geographic Information System (GIS) software was used to gather this data using a 250-feet buffer around the clusters. Also, GIS was used to identify the infrastructure design and locations nearby the studied area (e.g. schools and hospitals) to understand the crash environments. Observation of the associated factors with pedestrian crashes were studied at the location of interest. An analysis of all safety efforts was completed and a list of recommendations and possible implementation strategies (e.g. pedestrian countermeasures). Finally, it was found that four types of pedestrian crashes were most representative that crashes involved left-turning vehicle, crashes involved right-turn vehicle, crashed involved pedestrian in crosswalk and through traffic, and pedestrian were not cross at designated cross location
Recent years have witnessed a colossal increase of vehicles on the roads; unfortunately, the infrastructure of roads and traffic systems has not kept pace with this growth, resulting in inefficient traffic management. Owing to this imbalance, traffic jams on roads, congestions, and pollution have shown a marked increase. The management of growing traffic is a major issue across the world. Intelligent Transportation Systems (ITS) have a great potential in offering solutions to such issues by using novel technologies. In this review, the ITS-based solutions for traffic management and control have been categorized as traffic data collection solutions, traffic management solutions, congestion avoidance solutions, and travel time prediction solutions. The solutions have been presented along with their underlying technologies, advantages, and drawbacks. First, important solutions for collecting traffic-related data and road conditions are discussed. Next, ITS solutions for the effective management of traffic are presented. Third, key strategies based on machine learning and computational intelligence for avoiding congestion are outlined. Fourth, important solutions for accurately predicting travel time are presented. Finally, avenues for future work in these areas are discussed.
This article considers various aspects of the impact of climate change on the railway infrastructure and operations. A brief international overview and the importance of this issue for Russia are given. Temperature effects, permafrost thawing, strong winds, floods and sea level rise, long-term effects, and adaptation measures are discussed. In conclusion, the authors give several recommendations on further research in this area, and highlight that special attention should be given to the areas in the Russian Federation which already face or might soon experience damage from storm events or flooding and sea level rise, namely Kaliningrad Region on the Baltic Sea, the area between Tuapse and Adler in Krasnodar Region on the Black Sea, and on Sakhalin Island from the side of the Sea of Japan.
Increasing requirements in the field of security, in particular in the transport sector, the rescue work, the inviolability of private property and others urged to research work in the field of radar monitoring people, vehicles or other objects in the environment that not allow make so using the most popular and available technology for production and analysis of video images. These conditions of poor visibility, or even lack thereof, are darkness, bad weather, smoke, dust, wall (roof) buildings and the vehicle body. Existing instruments and special equipment occupy a certain niche in this area, mainly for counter-terrorism operations. However, such equipment is not readily available and extremely high price. In the paper presented research is development of the group’s existing radar technology in the field of location through opaque obstacles.
The logistics performance has a crucial role in the industrial and economic development of countries. This study aims to underline implications for policy makers in improving the logistics performance of countries in terms of Industry 4.0. For this purpose, the effect of digitalisation on logistics performance is analysed by using correlation and multiple regression analysis. The empirical study builds upon dimensions and indicators of the Digital Economy and Society Index (DESI) and Logistics Performance Index (LPI) of the World Bank. The results indicate that governmental policies should target to deliver sound framework conditions for the generation of human capital (here: ICT specialists), sustainable usage of internet services (e.g. professional social networks, online sales, etc.), integration of digital technologies (e.g. Big Data, Cloud computing, etc.), as well as digital connectivity (here: fixed broadband and 4G coverage) in order facilitate improvement of logistics performance.
The paper presents issues associated with the impact of electromagnetic interference on static converters, which exploitation in a railway transport environment. The measurements of an electromagnetic field emitted by a static converter were shown. Designs of this kind are exploitation in railway facilities, therefore, they should not disturb the functioning of other equipment, the rail traffic control systems, in particular. As a result of the EMC tests, it was concluded that the permissible values of conducted interference emissions were exceeded. An analysis of the obtained results enabled developing a research model, and a further reliability and exploitation analysis, taking into account electromagnetic interference. This, in turn, enabled determining a relationship allowing to determine the probability of a static converter staying in a state of full ability. The presented discussions regarding a static converter, taking into account electromagnetic interference, allow for the numerical assessment of different types of solutions (technical and organizational), which can be implemented in order to mitigate the impact of electromagnetic interference on a system’s functioning.
Several European road operators and authorities joined the C-Roads Platform with the aim of harmonising the deployment activities of cooperative intelligent transport systems (C-ITS). C-ITS research is preliminary to future automated-driving vehicles. The current conventional highways were designed on traditional criteria and models specifically developed for traffic flows of manually guided vehicles. Thus, this article describes some new criteria for designing and monitoring road infrastructures on the basis of performance features of autonomous (or self-driving) vehicles.
The new criteria have been adopted to perform an accurate conformity control of the A22 Brenner motorway, included in the C-Roads Platform, and also to ascertain whether in future it may be travelled by automated vehicles in safety conditions. Always in accordance with the technical and scientific insights required by the C-Roads Platform, a traffic model has been implemented to estimate how the A22 capacity increases compared to current values, by taking various percentages of automated or manual vehicles into consideration. The results given by theoretical models indicate that the highway will be able to be travelled by automated vehicles in safety conditions. On the other hand, the lane capacity is due to increase up to 2.5 times more than the current capacities, experimentally determined through traffic data collected from 4 highway sections by means of Drake’s flow model.
The object of this study is a multicriteria transport problem, being stated for availability of several means of cargo delivery, meaning a multimodal transport problem. The optimization criteria of the multimodal transport problem described above are two objective functions of minimizing total transportation costs and level of transport risks. Three types of transport were selected for research: automobile, rail and river (inland waterway). The results of the study lay the foundation for development of a new valid algorithm for solving multimodal transport problems like multi-criteria optimization ones. The main advantage of such an algorithm lies in its higher potential convergence rate compared to classical numerical optimization methods, which now are predominantly used to solve the problems of this type. This advantage may not be decisive, but it appears to be at least quite an important argument when choosing the method of realization for two-criteria multimodal transport problems earlier considered, especially, in case of a large dimension. Moreover, the algorithm described in the work can be applied to similar problems with any number of types of transport and optimization criteria.
The paper describes a mixed reality environment for testing highly automated vehicle functions. The proposed Scenario-inthe-Loop test system connects real-time computer simulation with real elements being applicable at automotive proving ground. The paper outlines necessary hardware and software requirements and proposes basic system architecture. The limitation and bottleneck of the system are also identified: latency of the wireless communication constraints the accuracy of the test system. However, the presented framework can contribute to efficient development, testing and validation of automated cars. The Scenario-In-The-Loop architecture has also been justified by real-world demonstration using an experimental 5G New Radio network technology.
This study provides with a safety assessment of the pedestrian’s crash data in one of the largest cities of the state of Michigan, Grand Rapids. Crash data reviewed included a 9-year period between years 2010 and 2018. Crash clusters with largest number of accidents were selected to perform analysis based on the normalization of crash with population (using Census Bureau information). Geographic Information System (GIS) software was used to gather this data using a 250-feet buffer around the clusters. Also, GIS was used to identify the infrastructure design and locations nearby the studied area (e.g. schools and hospitals) to understand the crash environments. Observation of the associated factors with pedestrian crashes were studied at the location of interest. An analysis of all safety efforts was completed and a list of recommendations and possible implementation strategies (e.g. pedestrian countermeasures). Finally, it was found that four types of pedestrian crashes were most representative that crashes involved left-turning vehicle, crashes involved right-turn vehicle, crashed involved pedestrian in crosswalk and through traffic, and pedestrian were not cross at designated cross location
Recent years have witnessed a colossal increase of vehicles on the roads; unfortunately, the infrastructure of roads and traffic systems has not kept pace with this growth, resulting in inefficient traffic management. Owing to this imbalance, traffic jams on roads, congestions, and pollution have shown a marked increase. The management of growing traffic is a major issue across the world. Intelligent Transportation Systems (ITS) have a great potential in offering solutions to such issues by using novel technologies. In this review, the ITS-based solutions for traffic management and control have been categorized as traffic data collection solutions, traffic management solutions, congestion avoidance solutions, and travel time prediction solutions. The solutions have been presented along with their underlying technologies, advantages, and drawbacks. First, important solutions for collecting traffic-related data and road conditions are discussed. Next, ITS solutions for the effective management of traffic are presented. Third, key strategies based on machine learning and computational intelligence for avoiding congestion are outlined. Fourth, important solutions for accurately predicting travel time are presented. Finally, avenues for future work in these areas are discussed.
This article considers various aspects of the impact of climate change on the railway infrastructure and operations. A brief international overview and the importance of this issue for Russia are given. Temperature effects, permafrost thawing, strong winds, floods and sea level rise, long-term effects, and adaptation measures are discussed. In conclusion, the authors give several recommendations on further research in this area, and highlight that special attention should be given to the areas in the Russian Federation which already face or might soon experience damage from storm events or flooding and sea level rise, namely Kaliningrad Region on the Baltic Sea, the area between Tuapse and Adler in Krasnodar Region on the Black Sea, and on Sakhalin Island from the side of the Sea of Japan.
Increasing requirements in the field of security, in particular in the transport sector, the rescue work, the inviolability of private property and others urged to research work in the field of radar monitoring people, vehicles or other objects in the environment that not allow make so using the most popular and available technology for production and analysis of video images. These conditions of poor visibility, or even lack thereof, are darkness, bad weather, smoke, dust, wall (roof) buildings and the vehicle body. Existing instruments and special equipment occupy a certain niche in this area, mainly for counter-terrorism operations. However, such equipment is not readily available and extremely high price. In the paper presented research is development of the group’s existing radar technology in the field of location through opaque obstacles.
The logistics performance has a crucial role in the industrial and economic development of countries. This study aims to underline implications for policy makers in improving the logistics performance of countries in terms of Industry 4.0. For this purpose, the effect of digitalisation on logistics performance is analysed by using correlation and multiple regression analysis. The empirical study builds upon dimensions and indicators of the Digital Economy and Society Index (DESI) and Logistics Performance Index (LPI) of the World Bank. The results indicate that governmental policies should target to deliver sound framework conditions for the generation of human capital (here: ICT specialists), sustainable usage of internet services (e.g. professional social networks, online sales, etc.), integration of digital technologies (e.g. Big Data, Cloud computing, etc.), as well as digital connectivity (here: fixed broadband and 4G coverage) in order facilitate improvement of logistics performance.
The paper presents issues associated with the impact of electromagnetic interference on static converters, which exploitation in a railway transport environment. The measurements of an electromagnetic field emitted by a static converter were shown. Designs of this kind are exploitation in railway facilities, therefore, they should not disturb the functioning of other equipment, the rail traffic control systems, in particular. As a result of the EMC tests, it was concluded that the permissible values of conducted interference emissions were exceeded. An analysis of the obtained results enabled developing a research model, and a further reliability and exploitation analysis, taking into account electromagnetic interference. This, in turn, enabled determining a relationship allowing to determine the probability of a static converter staying in a state of full ability. The presented discussions regarding a static converter, taking into account electromagnetic interference, allow for the numerical assessment of different types of solutions (technical and organizational), which can be implemented in order to mitigate the impact of electromagnetic interference on a system’s functioning.
Several European road operators and authorities joined the C-Roads Platform with the aim of harmonising the deployment activities of cooperative intelligent transport systems (C-ITS). C-ITS research is preliminary to future automated-driving vehicles. The current conventional highways were designed on traditional criteria and models specifically developed for traffic flows of manually guided vehicles. Thus, this article describes some new criteria for designing and monitoring road infrastructures on the basis of performance features of autonomous (or self-driving) vehicles.
The new criteria have been adopted to perform an accurate conformity control of the A22 Brenner motorway, included in the C-Roads Platform, and also to ascertain whether in future it may be travelled by automated vehicles in safety conditions. Always in accordance with the technical and scientific insights required by the C-Roads Platform, a traffic model has been implemented to estimate how the A22 capacity increases compared to current values, by taking various percentages of automated or manual vehicles into consideration. The results given by theoretical models indicate that the highway will be able to be travelled by automated vehicles in safety conditions. On the other hand, the lane capacity is due to increase up to 2.5 times more than the current capacities, experimentally determined through traffic data collected from 4 highway sections by means of Drake’s flow model.