Zeitschriften und Ausgaben

Volumen 16 (2022): Heft 3 (September 2022)

Volumen 16 (2022): Heft 2 (June 2022)

Volumen 16 (2022): Heft 1 (March 2022)

Volumen 15 (2021): Heft 4 (December 2021)

Volumen 15 (2021): Heft 3 (September 2021)

Volumen 15 (2021): Heft 2 (June 2021)

Volumen 15 (2021): Heft 1 (March 2021)

Volumen 14 (2020): Heft 4 (December 2020)

Volumen 14 (2020): Heft 3 (September 2020)

Volumen 14 (2020): Heft 2 (June 2020)

Volumen 14 (2020): Heft 1 (March 2020)

Volumen 13 (2019): Heft 4 (December 2019)

Volumen 13 (2019): Heft 3 (September 2019)

Volumen 13 (2019): Heft 2 (June 2019)

Volumen 13 (2019): Heft 1 (March 2019)

Volumen 12 (2018): Heft 4 (December 2018)

Volumen 12 (2018): Heft 3 (September 2018)

Volumen 12 (2018): Heft 2 (June 2018)

Volumen 12 (2018): Heft 1 (March 2018)

Volumen 11 (2017): Heft 4 (December 2017)

Volumen 11 (2017): Heft 3 (September 2017)

Volumen 11 (2017): Heft 2 (June 2017)

Volumen 11 (2017): Heft 1 (March 2017)

Volumen 10 (2016): Heft 4 (December 2016)

Volumen 10 (2016): Heft 3 (September 2016)

Volumen 10 (2016): Heft 2 (June 2016)

Volumen 10 (2016): Heft 1 (March 2016)

Volumen 9 (2015): Heft 4 (December 2015)

Volumen 9 (2015): Heft 3 (September 2015)

Volumen 9 (2015): Heft 2 (June 2015)

Volumen 9 (2015): Heft 1 (March 2015)

Volumen 8 (2014): Heft 4 (December 2014)

Volumen 8 (2014): Heft 3 (September 2014)

Volumen 8 (2014): Heft 2 (June 2014)

Volumen 8 (2014): Heft 1 (March 2014)

Volumen 7 (2013): Heft 4 (December 2013)

Volumen 7 (2013): Heft 3 (September 2013)

Volumen 7 (2013): Heft 2 (June 2013)

Volumen 7 (2013): Heft 1 (March 2013)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

Volumen 10 (2016): Heft 1 (March 2016)

Zeitschriftendaten
Format
Zeitschrift
eISSN
2300-5319
Erstveröffentlichung
22 Jan 2014
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

Suche

12 Artikel
access type Uneingeschränkter Zugang

Numerical Analysis of Stress and Strain in Specimens with Rectangular Cross-Section Subjected to Torsion and Bending with Torsion

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 5 - 11

Zusammenfassung

Abstract

The paper presents an analysis of the state of stress and crack tip opening displacement (strain) in specimens with rectangular cross-section subjected to torsion and combined bending with torsion. The specimens were made of the EN AW-2017A aluminium alloy. The specimens had an external unilateral notch, which was 2 mm deep and its radius was 22.5 mm. The tests were performed at constant moment amplitude MT = MBT = 15.84 N·m and under stress ratio R = −1. The exemplary results of numerical computations being obtained by using the FRANC3D software were shown in the form of stress and crack tip opening displacement (CTOD) maps. The paper presents the differences of fatigue cracks growth under torsion and bending with torsion being derived by using the FRANC3D software.

Schlüsselwörter

  • Numerical Method
  • Fatigue Crack Growth
  • Torsion and Bending with Torsion
access type Uneingeschränkter Zugang

Analysis of Correlation between Stresses and Fatigue Lives of Welded Steel Specimens Based on Real Three-Dimensional Weld Geometry

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 12 - 16

Zusammenfassung

Abstract

Welded joints are areas of increased stresses in construction. The reason for this phenomenon is associated with the nonhomogeneous mechanical, structural and geometrical properties of the weld. In the article the correlations between locally raised stresses due to real geometry and fatigue lives of non-load carrying cruciform joints made from S355J2+N steel are analysed. Stresses were computed using Finite Element Method (FEM) based on real three-dimensional weld geometry obtained by 3D scanning. The specimens were experimentally tested under cyclic push-pull loading with a zero mean value of applied force. The correlation was analysed using Pearson’s correlation coefficient and statistical hypotheses. It was shown that statistically significant correlation exists between maximum values of normal stresses and fatigue lives.

Schlüsselwörter

  • 3D Topography of Weld Joint
  • Non-Load Carrying Cruciform Joints
  • FEM Analysis
  • Correlation Analysis
access type Uneingeschränkter Zugang

Testing of Composite Panels Used as Components of a Freight Wagon by Thermovision

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 17 - 21

Zusammenfassung

Abstract

In this paper research methods for detection of laminate panels damage were presented. The most common damage is: matrix cracking laminate interlayer damage to joints, connecting cracks, delamination and fiber breakage. The tested laminates will be used as assemblies and sub-assemblies of freight wagon. Other methods of modeling of machines by means of transducers are shown in Płaczek (2012, 2015) and Białas (2010). As part of the project authors were collaborated with specialists from other research centers and scientific research (Bocian and Kulisiewicz, 2013). As a part of future work the places where we will be able to replace the standard materials by parts made of laminate will be shown. Layered composites despite many advantages have also disadvantages. From last mentioned it is a relatively low resistance to transverse impact. When the laminate is used as a decorative element, its small damage is not a problem. The problems start when the composite satisfies more responsible tasks such as: is a part of the technical means for example of a railway wagon. Aspect of continuous monitoring of the technical state of the laminate is very important. Current technology provides numerous opportunities for non-destructive methods of technical inspections. In this paper method for testing of large areas, completely non-contact, based on the methods of thermography, was presented. It consists heating by using the composite tubes and examining it through a thermal imaging camera. Length of heating, and consequently the temperature to which the laminate is heated mostly were chosen experimentally. During the measurements, the camera measures the intensity of radiation, not temperature. Received thermogram is not always a precise representation of the actual temperature, because the camera does not reach only the radiation from tested object, but also reaches the radiation coming from the environment and reflected objects etc. As part of the research authors also we undertook other work related to Mechanical Engineering (Wróbel et al., 2008, 2010, 2012, 2013, 2015; Płaczek et al., 2014). Cooperation with other national and European centers has contributed to many publications of authors for example Tuma et al. (2013, 2014) and Jamroziak and Kosobudzki (2014).

Schlüsselwörter

  • Thermovision
  • Components
  • Testing
  • Panels
  • Imaging Method
access type Uneingeschränkter Zugang

Accelerated Determination of Fatigue Limit and S-N Curve by Means of Thermographic Method for X5CrNi18-10 Steel

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 22 - 27

Zusammenfassung

Abstract

A new thermographic method that enables simultaneous accelerated determination of the fatigue limit and the S-N curve was presented in this paper. The fatigue limit determination method was based on a constant rate of temperature rise occurring in second phase of the specimen fatigue life. The S-N curve determination method was based on energetic parameter with assumption of its dependency on the stress amplitude. The tests made on X5CrNi18-10 steel under reversed bending revealed that the fatigue limit value obtained from accelerated thermographic tests as compared to the value obtained from full test differs by 5.0 %. The S-N curve obtained by accelerated thermographic method fits inside 95 % confidence interval for the S-N curve obtained from full test.

Schlüsselwörter

  • Fatigue Limit
  • S-N Curve
  • IR Thermography
access type Uneingeschränkter Zugang

A Ground Control Station for the UAV Flight Simulator

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 28 - 32

Zusammenfassung

Abstract

In the paper implementation of a ground control station for UAV flight simulator is shown. The ground control station software is in cooperation with flight simulator, displaying various aircraft flight parameters. The software is programmed in C++ language and utilizes the windows forms for implementing graphical content. One of the main aims of the design of the application was to simplify the interface, simultaneously maintaining the functionality and the eligibility. A mission can be planned and monitored using the implemented map control supported by waypoint list.

Schlüsselwörter

  • Ground Control Station
  • Flight Simulator
access type Uneingeschränkter Zugang

Plastic Mechanisms for Thin-Walled Cold-Formed Steel Members in Eccentric Compression

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 33 - 37

Zusammenfassung

Abstract

The Eurocode 3 concerning thin-walled steel members divides members subjected to compression into four classes, considering their ductility. The representatives of the class C4 are short bars, for which the load-capacity corresponds to the maximum compression stresses less than the yield stress. There are bars prone to local buckling in the elastic range and they do not have a real post-elastic capacity. The failure at ultimate stage of such members, either in compression or bending, always occurs by forming a local plastic mechanism. This fact suggests the possibility to use the local plastic mechanism to characterise the ultimate strength of such members. The present paper is based on previous studies and some latest investigations of the authors, as well as the literature collected data. It represents an attempt to study the plastic mechanisms for members in eccentric compression about minor axis and the evolution of plastic mechanisms, considering several types of lipped channel sections.

Schlüsselwörter

  • Plastic Mechanism
  • Eccentric Compression
access type Uneingeschränkter Zugang

Deformation Properties of Tailor Welded Blank Made of Dual Phase Steels

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 38 - 42

Zusammenfassung

Abstract

The paper is dedicated to forming and properties of passenger car’s B-pillar reinforcement drawn from simple blank and alternatively tailor-welded blank (TWB). Drawn part is characterised by a place with a large strain, while forming process simulation did not confirm the creation of crack using the TWB consisting of dual phase HCT980X instead of previous HCT600 steel. It is because HCT980X steel has higher strength and lower ductile properties. The analysis of properties of drawn parts is focused on the simulated crash test in Dynaform software. Obtained sizes of drawn forces in simulated frame of the drawn parts and their comparison proved the possibility of the replacement the 1.2 mm thick simple blank from HCT600 steel with the 1 mm thick TWB consisting of HCT600 and HCT980X steel. The changed thickness of the simple blank caused 20% weight saving while containing the same properties of the drawn part.

Schlüsselwörter

  • Dual Phase Steels
  • Tailor-Welded Blank
  • Drawn Part
  • Crash Test Simulation
  • Reaction Force
access type Uneingeschränkter Zugang

Some Considerations on an Underwater Robotic Manipulator Subjected to the Environmental Disturbances Caused by Water Current

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 43 - 49

Zusammenfassung

Abstract

The objective of this paper is to discuss some of the issues associated with environmental load on the three-link serial manipulator caused by underwater current. We have conducted CFD simulations to investigate hydrodynamic effects induced by changing current direction and changing with time current speed in order to better understand the physics of the problem. The results are presented in terms of moments of hydrodynamic forces plotted against relative position of the current and the robotic arm. Time history of hydrodynamic loads according to periodically changing current speed is presented and discussed.

Schlüsselwörter

  • Underwater Manipulator
  • CFD
  • Current Disturbances
access type Uneingeschränkter Zugang

Thrust Porous Bearing with Rough Surfaces Lubricated by a Rotem-Shinnar Fluid

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 50 - 55

Zusammenfassung

Abstract

In the paper the influence of both bearing surfaces roughness and porosity of one bearing surface on the pressure distribution and load-carrying capacity of a thrust bearing surfaces is discussed. The equations of motion of a pseudo-plastic fluid of Rotem-Shinnar, are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of squeeze film bearing and externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing with squeezed film is considered as a numerical example.

Schlüsselwörter

  • Pseudo-Plastic Fluid
  • Rotem-Shinnar Model
  • Thrust Bearing
  • Porous Layer
  • Christensen Roughness
access type Uneingeschränkter Zugang

Application of a SPH Coupled FEM Method for Simulation of Trimming of Aluminum Autobody Sheet

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 56 - 61

Zusammenfassung

Abstract

In this paper, the applications of mesh-free SPH (Smoothed Particle Hydrodynamics) continuum method to the simulation and analysis of trimming process is presented. In dealing with shearing simulations for example of blanking, piercing or slitting, existing literatures apply finite element method (FEM) to analysis of this processes. Presented in this work approach and its application to trimming of aluminum autobody sheet allows for a complex analysis of physical phenomena occurring during the process without significant deterioration in the quality of the finite element mesh during large deformation. This allows for accurate representation of the loss of cohesion of the material under the influence of cutting tools. An analysis of state of stress, strain and fracture mechanisms of the material is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC) for monitoring the cutting process is used.

Schlüsselwörter

  • Trimming
  • Smoothed Particle Hydrodynamics
  • Digital Image Correlation
access type Uneingeschränkter Zugang

Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 62 - 65

Zusammenfassung

Abstract

The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

Schlüsselwörter

  • Lifetime
  • Strain Control
  • Bending
  • Push-Pull
  • Tension-Compression
access type Uneingeschränkter Zugang

Boundary Integral Equations for an Anisotropic Bimaterial with Thermally Imperfect Interface and Internal Inhomogeneities

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 66 - 74

Zusammenfassung

Abstract

This paper studies a thermoelastic anisotropic bimaterial with thermally imperfect interface and internal inhomogeneities. Based on the complex variable calculus and the extended Stroh formalism a new approach is proposed for obtaining the Somigliana type integral formulae and corresponding boundary integral equations for a thermoelastic bimaterial consisting of two half-spaces with different thermal and mechanical properties. The half-spaces are bonded together with mechanically perfect and thermally imperfect interface, which model interfacial adhesive layers present in bimaterial solids. Obtained integral equations are introduced into the modified boundary element method that allows solving arbitrary 2D thermoelacticity problems for anisotropic bimaterial solids with imperfect thin thermo-resistant inter-facial layer, which half-spaces contain cracks and thin inclusions. Presented numerical examples show the effect of thermal resistance of the bimaterial interface on the stress intensity factors at thin inhomogeneities.

Schlüsselwörter

  • Bimaterial
  • Imperfect Interface
  • Thermoelastic
  • Anisotropic
  • Crack
  • Thin Inclusion
12 Artikel
access type Uneingeschränkter Zugang

Numerical Analysis of Stress and Strain in Specimens with Rectangular Cross-Section Subjected to Torsion and Bending with Torsion

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 5 - 11

Zusammenfassung

Abstract

The paper presents an analysis of the state of stress and crack tip opening displacement (strain) in specimens with rectangular cross-section subjected to torsion and combined bending with torsion. The specimens were made of the EN AW-2017A aluminium alloy. The specimens had an external unilateral notch, which was 2 mm deep and its radius was 22.5 mm. The tests were performed at constant moment amplitude MT = MBT = 15.84 N·m and under stress ratio R = −1. The exemplary results of numerical computations being obtained by using the FRANC3D software were shown in the form of stress and crack tip opening displacement (CTOD) maps. The paper presents the differences of fatigue cracks growth under torsion and bending with torsion being derived by using the FRANC3D software.

Schlüsselwörter

  • Numerical Method
  • Fatigue Crack Growth
  • Torsion and Bending with Torsion
access type Uneingeschränkter Zugang

Analysis of Correlation between Stresses and Fatigue Lives of Welded Steel Specimens Based on Real Three-Dimensional Weld Geometry

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 12 - 16

Zusammenfassung

Abstract

Welded joints are areas of increased stresses in construction. The reason for this phenomenon is associated with the nonhomogeneous mechanical, structural and geometrical properties of the weld. In the article the correlations between locally raised stresses due to real geometry and fatigue lives of non-load carrying cruciform joints made from S355J2+N steel are analysed. Stresses were computed using Finite Element Method (FEM) based on real three-dimensional weld geometry obtained by 3D scanning. The specimens were experimentally tested under cyclic push-pull loading with a zero mean value of applied force. The correlation was analysed using Pearson’s correlation coefficient and statistical hypotheses. It was shown that statistically significant correlation exists between maximum values of normal stresses and fatigue lives.

Schlüsselwörter

  • 3D Topography of Weld Joint
  • Non-Load Carrying Cruciform Joints
  • FEM Analysis
  • Correlation Analysis
access type Uneingeschränkter Zugang

Testing of Composite Panels Used as Components of a Freight Wagon by Thermovision

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 17 - 21

Zusammenfassung

Abstract

In this paper research methods for detection of laminate panels damage were presented. The most common damage is: matrix cracking laminate interlayer damage to joints, connecting cracks, delamination and fiber breakage. The tested laminates will be used as assemblies and sub-assemblies of freight wagon. Other methods of modeling of machines by means of transducers are shown in Płaczek (2012, 2015) and Białas (2010). As part of the project authors were collaborated with specialists from other research centers and scientific research (Bocian and Kulisiewicz, 2013). As a part of future work the places where we will be able to replace the standard materials by parts made of laminate will be shown. Layered composites despite many advantages have also disadvantages. From last mentioned it is a relatively low resistance to transverse impact. When the laminate is used as a decorative element, its small damage is not a problem. The problems start when the composite satisfies more responsible tasks such as: is a part of the technical means for example of a railway wagon. Aspect of continuous monitoring of the technical state of the laminate is very important. Current technology provides numerous opportunities for non-destructive methods of technical inspections. In this paper method for testing of large areas, completely non-contact, based on the methods of thermography, was presented. It consists heating by using the composite tubes and examining it through a thermal imaging camera. Length of heating, and consequently the temperature to which the laminate is heated mostly were chosen experimentally. During the measurements, the camera measures the intensity of radiation, not temperature. Received thermogram is not always a precise representation of the actual temperature, because the camera does not reach only the radiation from tested object, but also reaches the radiation coming from the environment and reflected objects etc. As part of the research authors also we undertook other work related to Mechanical Engineering (Wróbel et al., 2008, 2010, 2012, 2013, 2015; Płaczek et al., 2014). Cooperation with other national and European centers has contributed to many publications of authors for example Tuma et al. (2013, 2014) and Jamroziak and Kosobudzki (2014).

Schlüsselwörter

  • Thermovision
  • Components
  • Testing
  • Panels
  • Imaging Method
access type Uneingeschränkter Zugang

Accelerated Determination of Fatigue Limit and S-N Curve by Means of Thermographic Method for X5CrNi18-10 Steel

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 22 - 27

Zusammenfassung

Abstract

A new thermographic method that enables simultaneous accelerated determination of the fatigue limit and the S-N curve was presented in this paper. The fatigue limit determination method was based on a constant rate of temperature rise occurring in second phase of the specimen fatigue life. The S-N curve determination method was based on energetic parameter with assumption of its dependency on the stress amplitude. The tests made on X5CrNi18-10 steel under reversed bending revealed that the fatigue limit value obtained from accelerated thermographic tests as compared to the value obtained from full test differs by 5.0 %. The S-N curve obtained by accelerated thermographic method fits inside 95 % confidence interval for the S-N curve obtained from full test.

Schlüsselwörter

  • Fatigue Limit
  • S-N Curve
  • IR Thermography
access type Uneingeschränkter Zugang

A Ground Control Station for the UAV Flight Simulator

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 28 - 32

Zusammenfassung

Abstract

In the paper implementation of a ground control station for UAV flight simulator is shown. The ground control station software is in cooperation with flight simulator, displaying various aircraft flight parameters. The software is programmed in C++ language and utilizes the windows forms for implementing graphical content. One of the main aims of the design of the application was to simplify the interface, simultaneously maintaining the functionality and the eligibility. A mission can be planned and monitored using the implemented map control supported by waypoint list.

Schlüsselwörter

  • Ground Control Station
  • Flight Simulator
access type Uneingeschränkter Zugang

Plastic Mechanisms for Thin-Walled Cold-Formed Steel Members in Eccentric Compression

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 33 - 37

Zusammenfassung

Abstract

The Eurocode 3 concerning thin-walled steel members divides members subjected to compression into four classes, considering their ductility. The representatives of the class C4 are short bars, for which the load-capacity corresponds to the maximum compression stresses less than the yield stress. There are bars prone to local buckling in the elastic range and they do not have a real post-elastic capacity. The failure at ultimate stage of such members, either in compression or bending, always occurs by forming a local plastic mechanism. This fact suggests the possibility to use the local plastic mechanism to characterise the ultimate strength of such members. The present paper is based on previous studies and some latest investigations of the authors, as well as the literature collected data. It represents an attempt to study the plastic mechanisms for members in eccentric compression about minor axis and the evolution of plastic mechanisms, considering several types of lipped channel sections.

Schlüsselwörter

  • Plastic Mechanism
  • Eccentric Compression
access type Uneingeschränkter Zugang

Deformation Properties of Tailor Welded Blank Made of Dual Phase Steels

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 38 - 42

Zusammenfassung

Abstract

The paper is dedicated to forming and properties of passenger car’s B-pillar reinforcement drawn from simple blank and alternatively tailor-welded blank (TWB). Drawn part is characterised by a place with a large strain, while forming process simulation did not confirm the creation of crack using the TWB consisting of dual phase HCT980X instead of previous HCT600 steel. It is because HCT980X steel has higher strength and lower ductile properties. The analysis of properties of drawn parts is focused on the simulated crash test in Dynaform software. Obtained sizes of drawn forces in simulated frame of the drawn parts and their comparison proved the possibility of the replacement the 1.2 mm thick simple blank from HCT600 steel with the 1 mm thick TWB consisting of HCT600 and HCT980X steel. The changed thickness of the simple blank caused 20% weight saving while containing the same properties of the drawn part.

Schlüsselwörter

  • Dual Phase Steels
  • Tailor-Welded Blank
  • Drawn Part
  • Crash Test Simulation
  • Reaction Force
access type Uneingeschränkter Zugang

Some Considerations on an Underwater Robotic Manipulator Subjected to the Environmental Disturbances Caused by Water Current

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 43 - 49

Zusammenfassung

Abstract

The objective of this paper is to discuss some of the issues associated with environmental load on the three-link serial manipulator caused by underwater current. We have conducted CFD simulations to investigate hydrodynamic effects induced by changing current direction and changing with time current speed in order to better understand the physics of the problem. The results are presented in terms of moments of hydrodynamic forces plotted against relative position of the current and the robotic arm. Time history of hydrodynamic loads according to periodically changing current speed is presented and discussed.

Schlüsselwörter

  • Underwater Manipulator
  • CFD
  • Current Disturbances
access type Uneingeschränkter Zugang

Thrust Porous Bearing with Rough Surfaces Lubricated by a Rotem-Shinnar Fluid

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 50 - 55

Zusammenfassung

Abstract

In the paper the influence of both bearing surfaces roughness and porosity of one bearing surface on the pressure distribution and load-carrying capacity of a thrust bearing surfaces is discussed. The equations of motion of a pseudo-plastic fluid of Rotem-Shinnar, are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of squeeze film bearing and externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing with squeezed film is considered as a numerical example.

Schlüsselwörter

  • Pseudo-Plastic Fluid
  • Rotem-Shinnar Model
  • Thrust Bearing
  • Porous Layer
  • Christensen Roughness
access type Uneingeschränkter Zugang

Application of a SPH Coupled FEM Method for Simulation of Trimming of Aluminum Autobody Sheet

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 56 - 61

Zusammenfassung

Abstract

In this paper, the applications of mesh-free SPH (Smoothed Particle Hydrodynamics) continuum method to the simulation and analysis of trimming process is presented. In dealing with shearing simulations for example of blanking, piercing or slitting, existing literatures apply finite element method (FEM) to analysis of this processes. Presented in this work approach and its application to trimming of aluminum autobody sheet allows for a complex analysis of physical phenomena occurring during the process without significant deterioration in the quality of the finite element mesh during large deformation. This allows for accurate representation of the loss of cohesion of the material under the influence of cutting tools. An analysis of state of stress, strain and fracture mechanisms of the material is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC) for monitoring the cutting process is used.

Schlüsselwörter

  • Trimming
  • Smoothed Particle Hydrodynamics
  • Digital Image Correlation
access type Uneingeschränkter Zugang

Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 62 - 65

Zusammenfassung

Abstract

The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

Schlüsselwörter

  • Lifetime
  • Strain Control
  • Bending
  • Push-Pull
  • Tension-Compression
access type Uneingeschränkter Zugang

Boundary Integral Equations for an Anisotropic Bimaterial with Thermally Imperfect Interface and Internal Inhomogeneities

Online veröffentlicht: 07 Mar 2016
Seitenbereich: 66 - 74

Zusammenfassung

Abstract

This paper studies a thermoelastic anisotropic bimaterial with thermally imperfect interface and internal inhomogeneities. Based on the complex variable calculus and the extended Stroh formalism a new approach is proposed for obtaining the Somigliana type integral formulae and corresponding boundary integral equations for a thermoelastic bimaterial consisting of two half-spaces with different thermal and mechanical properties. The half-spaces are bonded together with mechanically perfect and thermally imperfect interface, which model interfacial adhesive layers present in bimaterial solids. Obtained integral equations are introduced into the modified boundary element method that allows solving arbitrary 2D thermoelacticity problems for anisotropic bimaterial solids with imperfect thin thermo-resistant inter-facial layer, which half-spaces contain cracks and thin inclusions. Presented numerical examples show the effect of thermal resistance of the bimaterial interface on the stress intensity factors at thin inhomogeneities.

Schlüsselwörter

  • Bimaterial
  • Imperfect Interface
  • Thermoelastic
  • Anisotropic
  • Crack
  • Thin Inclusion

Planen Sie Ihre Fernkonferenz mit Scienceendo