On a Fourth Order Parabolic Equation with Mixed Type Boundary Conditions in a Nonrectangular Domain
04. Feb. 2017
Über diesen Artikel
Artikel-Kategorie: Research Article
Online veröffentlicht: 04. Feb. 2017
Seitenbereich: 76 - 90
Eingereicht: 21. Apr. 2015
Akzeptiert: 03. Juli 2015
DOI: https://doi.org/10.7603/s40956-015-0006-5
Schlüsselwörter
© 2017
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
This paper is devoted to the study of the following fourth order parabolic equation ∂tu + ∂x4u = f in the non-necessarily rectangular domain
Q ={(t,x) ∈ℝ2 : 0 < t < T, ϕ1(t) < x < ϕ2(t)}.
The equation is subject to mixed type conditions ∂xu = ∂x3u + βu = 0, on the lateral boundary of Q. The right-hand side term f of the equation lies in Lω2 (Q) the space of square-integrable functions on Q with the measure ωdtdx. Our aim is to find sufficient conditions on the coefficient β and on the functions ϕi,i = 1, 2 and on the weight ω such that the solution of this equation belongs to the anisotropic Sobolev space
Hω1,4 (Q) = {u ∈ Lω2 (Q) : ∂tu, ∂xju ∈ Lω2 (Q) , j = 1, 2, 3, 4}.
The analysis is performed by using the domain decomposition method.