Uneingeschränkter Zugang

AI Enabled Pneumonia Detection and Diagnosis Based on the Concatenation Approach: A Framework for Healthcare Sustainability

, ,  und   
24. Juni 2025

Zitieren
COVER HERUNTERLADEN

Ashok, K. and Gopikrishnan, S. (2023). Improving security performance of healthcare data in the internet of medical things using a hybrid metaheuristic model, International Journal of Applied Mathematics and Computer Science 33(4): 623–636, DOI: 10.34768/amcs-2023-0044. Search in Google Scholar

Behzadi-Khormouji, H., Rostami, H., Salehi, S., Derakhshande-Rishehri, T., Masoumi, M., Salemi, S. and Batouli, A. (2020). Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images, Computer Methods and Programs in Biomedicine 185: 105162. Search in Google Scholar

Bernardi, D., Caumo, F.,Macaskill, P., Ciatto, S., Pellegrini,M., Brunelli, S. and Houssami, N. (2014). Effect of integrating 3d-mammography (digital breast tomosynthesis) with 2d-mammography on radiologists’ true-positive and false-positive detection in a population breast screening trial, European Journal of Cancer 50(7): 1232–1238. Search in Google Scholar

Casalino, G., Castellano, G., Hryniewicz, O., Leite, D., Opara, K., Radziszewska, W. and Kaczmarek-Majer, K. (2023). Semi–supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder, International Journal of Applied Mathematics and Computer Science 33(3): 419–428, DOI: 10.34768/amcs-2023-0030. Search in Google Scholar

Chouhan, V., Singh, S.K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C. and De Albuquerque, V.H.C. (2020). A novel transfer learning based approach for pneumonia detection in chest X-ray images, Applied Sciences 10(2): 559. Search in Google Scholar

Chowdhury, M.E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B. and Islam, M.T. (2020). Can ai help in screening viral and covid-19 pneumonia?, IEEE Access 8: 132665–132676. Search in Google Scholar

Cichosz, P. (2023). Bag of words and embedding text representation methods for medical article classification, International Journal of Applied Mathematics and Computer Science 33(4): 603–621, DOI: 10.34768/amcs-2023-0043. Search in Google Scholar

Dhere, A. and Sivaswamy, J. (2022). Covid detection from chest X-ray images using multi-scale attention, IEEE Journal of Biomedical and Health Informatics 26(4): 1496–1505. Search in Google Scholar

El-Douh, A.A.R., Lu, S.F., Elkouny, A.A. and Amein, A.S. (2022). Hybrid cryptography with a one–time stamp to secure contact tracing for covid–19 infection, International Journal of Applied Mathematics and Computer Science 32(1): 139–146, DOI: 10.34768/amcs-2022-0011. Search in Google Scholar

Feng, Y., Xu, X., Wang, Y., Lei, X., Teo, S.K., Sim, J.Z.T. and Tan, C.H. (2021). Deep supervised domain adaptation for pneumonia diagnosis from chest X-ray images, IEEE Journal of Biomedical and Health Informatics 26(3): 1080–1090. Search in Google Scholar

Feng, Y., Yang, X., Qiu, D., Zhang, H., Wei, D. and Liu, J. (2022). PCXRNet: Pneumonia diagnosis from chest X-ray images using condense attention block and multiconvolution attention block, IEEE Journal of Biomedical and Health Informatics 26(4): 1484–1495. Search in Google Scholar

Fu, Y., Xue, P., Zhang, Z. and Dong, E. (2023). Pka 2-net: Prior knowledge-based active attention network for accurate pneumonia diagnosis on chest X-ray images, IEEE Journal of Biomedical and Health Informatics 27(7): 3513–3524. Search in Google Scholar

Hashmi, M.F., Katiyar, S., Keskar, A.G., Bokde, N.D. and Geem, Z.W. (2020). Efficient pneumonia detection in chest X-ray images using deep transfer learning, Diagnostics 10(6): 417. Search in Google Scholar

Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q. (2017). Densely connected convolutional networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, pp. 4700–4708. Search in Google Scholar

Hussain, A., Amin, S.U., Lee, H., Khan, A., Khan, N.F. and Seo, S. (2023). An automated chest X-ray image analysis for covid-19 and pneumonia diagnosis using deep ensemble strategy, IEEE Access 11: 97207–97220. Search in Google Scholar

Jain, R., Nagrath, P., Kataria, G., Kaushik, V.S. and Hemanth, D.J. (2020a). Pneumonia detection in chest X-ray images using convolutional neural networks and transfer learning, Measurement 165: 108046. Search in Google Scholar

Jaiswal, A.K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A. and Rodrigues, J.J. (2019). Identifying pneumonia in chest X-rays: A deep learning approach, Measurement 145: 511–518. Search in Google Scholar

Khan, W., Zaki, N. and Ali, L. (2021). Intelligent pneumonia identification from chest X-rays: A systematic literature review, IEEE Access 9: 51747–51771. Search in Google Scholar

Kowal, M., Skobel, M., Gramacki, A. and Korbicz, J. (2021). Breast cancer nuclei segmentation and classification based on a deep learning approach, International Journal of Applied Mathematics and Computer Science 31(1): 85–106. Search in Google Scholar

Kundu, R., Das, R., Geem, Z.W., Han, G.T. and Sarkar, R. (2021). Pneumonia detection in chest X-ray images using an ensemble of deep learning models, PLoS ONE 16(9): e0256630. Search in Google Scholar

Li, X., Shen, L., Xie, X., Huang, S., Xie, Z., Hong, X. and Yu, J. (2020). Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection, Artificial Intelligence in Medicine 103: 101744. Search in Google Scholar

Liang, G. and Zheng, L. (2020a). A transfer learning method with DEEP residual network for pediatric pneumonia diagnosis, Computer Methods and Programs in Biomedicine 187: 104964. Search in Google Scholar

Liang, G. and Zheng, L. (2020b). A transfer learning method with deep residual network for pediatric pneumonia diagnosis, Computer Methods and Programs in Biomedicine 187: 104964. Search in Google Scholar

Ling, G. and Cao, C. (2019). Automatic detection and diagnosis of severe viral pneumonia CT images based on LDA-SVM, IEEE Sensors Journal 20(20): 11927–11934. Search in Google Scholar

Malla, P.P., Sahu, S. and Alutaibi, A.I. (2023). Classification of tumor in brain MR images using deep convolutional neural network and global average pooling, Processes 11(3): 679. Search in Google Scholar

Mooney, P. (2018). Chest X-ray images (pneumonia), https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia. Search in Google Scholar

Muhammad, Y., Alshehri, M.D., Alenazy,W.M., Vinh Hoang, T. and Alturki, R. (2021). Identification of pneumonia disease applying an intelligent computational framework based on deep learning and machine learning techniques, Mobile Information Systems 2021(1): 9989237. Search in Google Scholar

Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D. and Pfeiffer, D. (2019). Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization, Scientific Reports 9(1): 1–9. Search in Google Scholar

Rahman, T., Chowdhury, M.E., Khandakar, A., Islam, K.R., Islam, K.F., Mahbub, Z.B. and Kashem, S. (2020a). Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray, Applied Sciences 10(9): 3233. Search in Google Scholar

Rahman, T., Chowdhury, M.E., Khandakar, A., Islam, K.R., Islam, K.F., Mahbub, Z.B. and Kashem, S. (2020b). Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray, Applied Sciences 10(9): 3233. Search in Google Scholar

Rak, E., Szczur, A., Bazan, J.G. and Bazan-Socha, S. (2023). Assessment measures of an ensemble classifier based on the distributivity equation to predict the presence of severe coronary artery disease, International Journal of Applied Mathematics and Computer Science 33(3): 361–377, DOI: 10.34768/amcs-2023-0026. Search in Google Scholar

Sheu, R.K., Pardeshi, M.S., Pai, K.C., Chen, L.C., Wu, C.L. and Chen, W.C. (2023). Interpretable classification of pneumonia infection using explainable AI (XAI-ICP), IEEE Access 11: 28896–28919. Search in Google Scholar

Siddiqi, R. (2019). Automated pneumonia diagnosis using a customized sequential convolutional neural network, Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, New York, USA, pp. 64–70. Search in Google Scholar

Singh, S. and Tripathi, B.K. (2022). Pneumonia classification using quaternion deep learning, Multimedia Tools and Applications 81(2): 1743–1764. Search in Google Scholar

Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R. and Ibragimov, B. (2019). Deep neural network ensemble for pneumonia localization from a large-scale chest X-ray database, Computers & Electrical Engineering 78: 388–399. Search in Google Scholar

Souza, J.C., Diniz, J.O.B., Ferreira, J.L., da Silva, G.L.F., Silva, A.C. and de Paiva, A.C. (2019). An automatic method for lung segmentation and reconstruction in chest x-ray using deep neural networks, Computer Methods and Programs in Biomedicine 177: 285–296. Search in Google Scholar

Stephen, O., Sain, M., Maduh, U.J. and Jeong, D.U. (2019). An efficient deep learning approach to pneumonia classification in healthcare, Journal of Healthcare Engineering 2019(1):4180949.. Search in Google Scholar

Szepesi, P. and Szilágyi, L. (2022). Detection of pneumonia using convolutional neural networks and deep learning, Biocybernetics and Biomedical Engineering 42(3): 1012–1022. Search in Google Scholar

Taylor, A.G., Mielke, C. and Mongan, J. (2018). Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study, PLoS Medicine 15(11): e1002697. Search in Google Scholar

Toğaçar, M., Ergen, B., Cömert, Z. and Özyurt, F. (2020). A deep feature learning model for pneumonia detection applying a combination of MRMR feature selection and machine learning models, IRBM 41(4): 212–222. Search in Google Scholar

Wang, H., Shen, Y., Wang, S., Xiao, T., Deng, L., Wang, X. and Zhao, X. (2019). Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease, Neurocomputing 333: 145–156. Search in Google Scholar

Wózniak,M., Połap, D., Capizzi, G., Sciuto, G.L., Kósmider, L. and Frankiewicz, K. (2018). Small lung nodules detection based on local variance analysis and probabilistic neural network, Computer Methods and Programs in Biomedicine 161: 173–180. Search in Google Scholar

Yang, Z.Y. and Zhao, Q. (2020). A multiple deep learner approach for X-ray image-based pneumonia detection, 2020 International Conference on Machine Learning and Cybernetics (ICMLC), Adelaide, Australia, pp. 70–75. Search in Google Scholar

Yaseliani, M., Hamadani, A.Z., Maghsoodi, A.I. and Mosavi, A. (2022). Pneumonia detection proposing a hybrid deep convolutional neural network based on two parallel visual geometry group architectures and machine learning classifiers, IEEE Access 10: 62110–62128. Search in Google Scholar

Zhang, J., Xie, Y., Pang, G., Liao, Z., Verjans, J., Li, W. and Xia, Y. (2020). Viral pneumonia screening on chest X-rays using confidence-aware anomaly detection, IEEE Transactions on Medical Imaging 40(3): 879–890. Search in Google Scholar

Zhang, X., Han, L., Sobeih, T., Han, L., Dempsey, N., Lechareas, S. and Zhang, D. (2022). CXR-Net: a multitask deep learning network for explainable and accurate diagnosis of COVID-19 pneumonia from chest X-ray images, IEEE Journal of Biomedical and Health Informatics 27(2): 980–991. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Mathematik, Angewandte Mathematik