Uneingeschränkter Zugang

Isoconductivity method to study adhesion of yeast cells to gold electrode


Zitieren

Woodward AM, Kell DB. On the nonlinear dielectric properties of biological Systems: Saccharomyces cerevisiae. Bioelectroch. Bioener. 1990; 24: 83–100. http://dx.doi.org/10.1016/0302-4598(90)85013-810.1016/0302-4598(90)85013-8WoodwardAMKellDBOn the nonlinear dielectric properties of biological Systems: Saccharomyces cerevisiaeBioelectroch. Bioener19902483100http://dx.doi.org/10.1016/0302-4598(90)85013-8Open DOISearch in Google Scholar

Woodward AM, Kell DB. Confirmation by using mutant strains that the membrane-bound H+-ATPase is the major source of non-linear dielectricity in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 1991; 84: 91–95. http://dx.doi.org/10.1111/j.1574-6968.1991.tb04575.x10.1111/j.1574-6968.1991.tb04575.xWoodwardAMKellDBConfirmation by using mutant strains that the membrane-bound H+-ATPase is the major source of non-linear dielectricity in Saccharomyces cerevisiaeFEMS Microbiol. Lett1991849195http://dx.doi.org/10.1111/j.1574-6968.1991.tb04575.xOpen DOISearch in Google Scholar

Woodward AM, Kell DB. Dual-frequency excitation: a novel method for probing the nonlinear dielectric properties of biological systems, and its application to suspensions of S. cerevisiae. J. Electroanal. Chem. 1991; 320: 395–413. http://dx.doi.org/10.1016/0022-0728(91)85655-910.1016/0022-0728(91)85655-9WoodwardAMKellDBDual-frequency excitation: a novel method for probing the nonlinear dielectric properties of biological systems, and its application to suspensions of Scerevisiae. J. Electroanal. Chem1991320395413http://dx.doi.org/10.1016/0022-0728(91)85655-9Open DOISearch in Google Scholar

Ruiz GA, Felice CJ, Valentinuzzi ME.Non-linear response of electrode-electrolyte interface at high current density. Chaos Sol. Fract. 2005; 25: 649–654. http://dx.doi.org/10.1016/j.chaos.2004.11.029RuizGAFeliceCJValentinuzziMENon-linear response of electrode-electrolyte interface at high current density. Chaos SolFract200525649654http://dx.doi.org/10.1016/j.chaos.2004.11.02910.1016/j.chaos.2004.11.029Search in Google Scholar

Ruiz GA, Felice CJ. Non-linear response of an electrode– electrolyte interface impedance with the frequency. Chaos Sol. Fract. 2007; 31: 327–335. http://dx.doi.org/10.1016/j.chaos.2005.09.06410.1016/j.chaos.2005.09.064RuizGAFeliceCJNon-linear response of an electrode– electrolyte interface impedance with the frequencyChaos Sol. Fract200731327335http://dx.doi.org/10.1016/j.chaos.2005.09.064Open DOISearch in Google Scholar

Nawarathna D, Claycomb JR, Miller J, Benedik MJ. Nonlinear dielectric spectroscopy of live cells using superconducting quantum interference devices. App. Phys. Lett. 2004; 86: 23902–23903. http://dx.doi.org/10.1063/1.1844036NawarathnaDClaycombJRMillerJBenedikMJNonlinear dielectric spectroscopy of live cells using superconducting quantum interference devicesApp. Phys. Lett2004862390223903http://dx.doi.org/10.1063/1.184403610.1063/1.1844036Search in Google Scholar

Nawarathna D, Miller J, Claycomb JR, Cardenas G, Warmflash D. Harmonic response of cellular membrane pumps to low frequency electric fields. Phys. Rev. Lett. 2005; 95: 158103-158104. http://dx.doi.org/10.1103/PhysRevLett.95.1581031624176610.1103/PhysRevLett.95.158103NawarathnaDMillerJClaycombJRCardenasGWarmflashDHarmonic response of cellular membrane pumps to low frequency electric fieldsPhys. Rev. Lett200595158103158104http://dx.doi.org/10.1103/PhysRevLett.95.158103Search in Google Scholar

Nawarathna D, Miller J, Claycomb JR, Cardenas G, Gardner J, Warmflash D, Miller J. Harmonic generation by yeast cells in response to low-frequency electric fields. Phys. Rev. E. 2006; 73: 51914-51916. http://dx.doi.org/10.1103/PhysRevE.73.05191410.1103/PhysRevE.73.051914NawarathnaDMillerJClaycombJRCardenasGGardnerJWarmflashDMillerJHarmonic generation by yeast cells in response to low-frequency electric fieldsPhys. Rev. E2006735191451916http://dx.doi.org/10.1103/PhysRevE.73.051914Open DOISearch in Google Scholar

Treo E, Felice CJ. Non-linear dielectric spectroscopy of microbiological suspensions. Biomed. Eng. Online. 2005; 8: 19. http://dx.doi.org/10.1186/1475-925X-8-19TreoEFeliceCJNon-linear dielectric spectroscopy of microbiological suspensionsBiomed. Eng. Online2005819http://dx.doi.org/10.1186/1475-925X-8-1910.1186/1475-925X-8-19Search in Google Scholar

Blake-Coleman BC, Hutchings MJ, Silley P. Harmonic 'signatures' of microorganisms. Biosens. Bioelectron. 1994; 9: 231-242. http://dx.doi.org/10.1016/0956-5663(94)80126-6806059310.1016/0956-5663(94)80126-6Blake-ColemanBCHutchingsMJSilleyPHarmonic 'signatures' of microorganismsBiosens. Bioelectron19949231242http://dx.doi.org/10.1016/0956-5663(94)80126-6Search in Google Scholar

Mu-oz-Berbel X, Vigués N, Mas J, Toby A, Jenkins A, Mu-oz FJ.Impedimetric characterization of the changes produced in the electrode-solution interface by bacterial attachment. Electrochem. Commun. 2007; 9: 2654-2660. http://dx.doi.org/10.1016/j.elecom.2007.08.011Mu-oz-BerbelXViguésNMasJTobyAJenkinsAMu-ozFJImpedimetric characterization of the changes produced in the electrode-solution interface by bacterial attachment. ElectrochemCommun2007926542660http://dx.doi.org/10.1016/j.elecom.2007.08.01110.1016/j.elecom.2007.08.011Search in Google Scholar

Mu-oz-Berbel X, Vigués N, Jenkins A, Mas J, Mu-oz FJ. Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage. Biosens. Bioelectron. 2008; 23: 1540-1546. http://dx.doi.org/10.1016/j.bios.2008.01.00710.1016/j.bios.2008.01.00718308537Mu-oz-BerbelXViguésNJenkinsAMasJMu-ozFJImpedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stageBiosens. Bioelectron20082315401546http://dx.doi.org/10.1016/j.bios.2008.01.00718308537Open DOISearch in Google Scholar

Mu-oz-Berbel X, García-Aljaro C, Mu-oz FJ.Impedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages. Electrochim. Acta. 2008; 53: 5739-5744. http://dx.doi.org/10.1016/j.electacta.2008.03.050Mu-oz-BerbelXGarcía-AljaroCMu-ozFJImpedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages. ElectrochimActa20085357395744http://dx.doi.org/10.1016/j.electacta.2008.03.05010.1016/j.electacta.2008.03.050Search in Google Scholar

Mu-oz-Berbel X, Vigués N, Mas J, Mu-oz FJ, Cortina-Puig M. Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks. Biosens. Bioelectron. 2008; 24: 958-962. http://dx.doi.org/10.1016/j.bios.2008.07.05010.1016/j.bios.2008.07.050Mu-oz-BerbelXViguésNMasJMu-ozFJCortina-PuigMResolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networksBiosens. Bioelectron200824958962http://dx.doi.org/10.1016/j.bios.2008.07.05018783936Open DOISearch in Google Scholar

Vogt H. The incremental Ohmic resistance caused by bubbles adhering to an electrode. J. Appl. Electrochem. 1983; 13: 87-88. http://dx.doi.org/10.1007/BF0061589110.1007/BF00615891VogtHThe incremental Ohmic resistance caused by bubbles adhering to an electrodeJ. Appl. Electrochem1983138788http://dx.doi.org/10.1007/BF00615891Open DOISearch in Google Scholar

Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007; 34: 577-588. http://dx.doi.org/10.1007/s10295-007-0234-410.1007/s10295-007-0234-417619090PalmerJFlintSBrooksJBacterial cell attachment, the beginning of a biofilmJ. Ind. Microbiol. Biotechnol200734577588http://dx.doi.org/10.1007/s10295-007-0234-417619090Open DOISearch in Google Scholar

Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 1993; 75: 499-511. http://dx.doi.org/10.1111/j.1365-2672.1993.tb01587.x829430310.1111/j.1365-2672.1993.tb01587.xCarpentierBCerfOBiofilms and their consequences, with particular reference to hygiene in the food industryJ. Appl. Bacteriol199375499511http://dx.doi.org/10.1111/j.1365-2672.1993.tb01587.x8294303Search in Google Scholar

Gilbert P, Evans D, Evans E, Duguid I, Brown M. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. Appl. Bacteriol. 1991; 71: 72-77. http://dx.doi.org/10.1111/j.1365-2672.1991.tb04665.x1680117GilbertPEvansDEvansEDuguidIBrownMSurface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidisJ. Appl. Bacteriol1991717277http://dx.doi.org/10.1111/j.1365-2672.1991.tb04665.xSearch in Google Scholar

Van Loosdrecht M, Lyklema J, Norde W, Schroa G, Zehnder A. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 1987; 53: 1898–1901.VanLoosdrecht MLyklemaJNordeWSchroaGZehnderAElectrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesionAppl. Environ. Microbiol1987531898190110.1128/aem.53.8.1898-1901.19872040213662520Search in Google Scholar

Dunne M. Bacterial adhesion: seen any good biofilms lately?. Clin. Microbiol. Rev. 2002; 15: 155–166. http://dx.doi.org/10.1128/CMR.15.2.155-166.20021193222810.1128/CMR.15.2.155-166.2002DunneMBacterial adhesion: seen any good biofilms lately?Clin. Microbiol. Rev200215155166http://dx.doi.org/10.1128/CMR.15.2.155-166.200211807211932228Search in Google Scholar

Muñoz-Berbel X, Vigués N, Cortina-Puig M, Escudé R, García-Aljaro C, Mas J, Xavier Mu-oz F. Impedimetric approach for monitoring bacterial culture based on the changes in the magnitude of the interface capacitance. Anal. Methods. 2010; 2: 1036-1042. http://dx.doi.org/10.1039/c0ay00050g10.1039/c0ay00050gMuñoz-BerbelXViguésNCortina-PuigMEscudéRGarcía-AljaroCMasJXavierMu-oz FImpedimetric approach for monitoring bacterial culture based on the changes in the magnitude of the interface capacitanceAnal. Methods2010210361042http://dx.doi.org/10.1039/c0ay00050gOpen DOISearch in Google Scholar

Futschik K, PfutznerH. Electrode andmedia impedance for detection and characterization of microorganisms. Proceedings RC IEEE-EMBS & 14th BMESI. 1995; 1.75-1.76.FutschikKPfutznerH. Electrode andmedia impedance for detection and characterization of microorganisms. Proceedings RC IEEE-EMBS & 14th BMESI19951.751.76Search in Google Scholar

Liju Y, Chuanmin R, Yanbin L. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosens. Bioelectron. 2003; 19: 495-502. http://dx.doi.org/10.1016/S0956-5663(03)00229-X10.1016/S0956-5663(03)00229-X14623474LijuYChuanminRYanbinLDetection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistanceBiosens. Bioelectron200319495502http://dx.doi.org/10.1016/S0956-5663(03)00229-XOpen DOISearch in Google Scholar

Manli G, Jinhua Ch, Xubin Y, Kun Ch, Lihua N, Shouzhuo Y. Monitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopy. Biochim. Biophys. Acta. 2006; 1760: 432-439.10.1016/j.bbagen.2005.11.01116388905ManliGJinhuaChXubinYKunChLihuaNShouzhuoYMonitoring of cell growth and assessment of cytotoxicity using electrochemical impedance spectroscopyBiochim. Biophys. Acta20061760432439Open DOISearch in Google Scholar

Bayoudha S, Othmaneb A, Ponsonnet L, Ouada HB. Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber. Coll. Surf. A. 2008; 318: 291-300. http://dx.doi.org/10.1016/j.colsurfa.2008.01.00510.1016/j.colsurfa.2008.01.005BayoudhaSOthmanebAPonsonnetLOuadaHBElectrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamberColl. Surf. A2008318291300http://dx.doi.org/10.1016/j.colsurfa.2008.01.005Open DOISearch in Google Scholar

Hondroulis E, Liu Ch, Li ChZ. Nanotechnology. 2010; 21: 315103doi:10.1088/0957-4484/21/31/315103. http://dx.doi.org/10.1088/0957-4484/21/31/31510310.1088/0957-4484/21/31/31510320622302HondroulisELiuChLiChZNanotechnology20102131510310.1088/0957-4484/21/31/315103http://dx.doi.org/10.1088/0957-4484/21/31/315103Open DOISearch in Google Scholar

Kregiel D, Berlowska J, Szubzda B. Novel permittivity test for determination of yeast surface charge and flocculation abilities. J. Ind. Microbiol. Biotechnol. 2012; 39:1881–1886. http://dx.doi.org/10.1007/s10295-012-1193-y2297603910.1007/s10295-012-1193-yKregielDBerlowskaJSzubzdaBNovel permittivity test for determination of yeast surface charge and flocculation abilitiesJ. Ind. Microbiol. Biotechnol20123918811886http://dx.doi.org/10.1007/s10295-012-1193-ySearch in Google Scholar

Poortinga AT, Bos R, Norde W, Busscher H. Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. 2002; 47: 1–32. http://dx.doi.org/10.1016/S0167-5729(02)00032-810.1016/S0167-5729(02)00032-8PoortingaATBosRNordeWBusscherHElectric double layer interactions in bacterial adhesion to surfacesSurf. Sci. Rep.200247132http://dx.doi.org/10.1016/S0167-5729(02)00032-8Open DOISearch in Google Scholar

Van der Wal A, Norde W, Zehnder AJB, Lyklema J. Determination of the total charge in the cell walls of gram-positive bacteria. Coll. Surf. B Bioin. 1997; 9: 81–100. http://dx.doi.org/10.1016/S0927-7765(96)01340-910.1016/S0927-7765(96)01340-9Vander Wal ANordeWZehnderAJBLyklemaJDetermination of the total charge in the cell walls of gram-positive bacteriaColl. Surf. B Bioin1997981100http://dx.doi.org/10.1016/S0927-7765(96)01340-9Open DOISearch in Google Scholar

Valentinuzzi ME. Understanding the human machine, a primer for Bioengineering vol 4, 1st ed. New Jersey: World Scientific Publishing Company; 2004. http://dx.doi.org/10.1142/5597ValentinuzziMEUnderstanding the human machine, a primer for Bioengineering vol 4, 1st edNew JerseyWorld Scientific Publishing Company2004http://dx.doi.org/10.1142/559710.1142/5597Search in Google Scholar

Grosse C. Relaxation Mechanisms of Homogeneous Particles and Cells Suspended in Aqueous Electrolyte Solutions. In: Delgado A, editor. Interfacial Electrokinetics and Electrophoresis. New York: Marcel Dekker Inc.; 2002.P. 277– 327.GrosseCRelaxation Mechanisms of Homogeneous Particles and Cells Suspended in Aqueous Electrolyte Solutions. In: Delgado A, editor. Interfacial Electrokinetics and ElectrophoresisNew YorkMarcel Dekker Inc2002277– 327Search in Google Scholar

eISSN:
1891-5469
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie