Uneingeschränkter Zugang

Modeling and Simulation of Equivalent Circuits in Description of Biological Systems - A Fractional Calculus Approach


Zitieren

Rigaud B., Hamzaoui L., Chauveau N., Granie M., Scotto Di Rinaldi JP, and Morucci JP. Tissue characterization by impedance: a multifrequency approach. Physiol. Meas. 1994; 15: A13-A20. http://dx.doi.org/10.1088/0967-3334/15/2A/002808703510.1088/0967-3334/15/2A/002RigaudB.HamzaouiL.ChauveauN.GranieM.ScottoDi Rinaldi JPMorucciJPTissue characterization by impedance: a multifrequency approachPhysiol. Meas199415A13A20http://dx.doi.org/10.1088/0967-3334/15/2A/002Search in Google Scholar

Edelberg R. Biophysical Properties of the Skin, Elden HR, Editor. John Wiley & Sons, New York. 1971; 513-550.EdelbergRBiophysical Properties of the SkinEldenHRJohn Wiley & SonsNew York1971513550Search in Google Scholar

Cole KS. Cold Spring Harbor Symp. Quant. Biol. 1933;1: 107. http://dx.doi.org/10.1101/SQB.1933.001.01.014ColeKSCold Spring Harbor SympQuant. Biol19331107http://dx.doi.org/10.1101/SQB.1933.001.01.01410.1101/SQB.1933.001.01.014Search in Google Scholar

Hozawa S. Arch. Phys. 1928;219:111.Hozawa S. Arch. Phys.192821911110.1007/BF01723405Search in Google Scholar

Plutchik R., and Hirsch HR. Skin Impedance and Phase Angle as a Function of Frequency and Current. Science, 1963;141:919-927. http://dx.doi.org/10.1126/science.141.3584.927PlutchikR.HirschHRSkin Impedance and Phase Angle as a Function of Frequency and CurrentScience1963141919927http://dx.doi.org/10.1126/science.141.3584.92710.1126/science.141.3584.92714043339Search in Google Scholar

Stephens WGS. Med. Electron. Biol. Eng. 1963;1:384-389. http://dx.doi.org/10.1007/BF02474422StephensWGSMed. Electron. Biol. Eng19631384389http://dx.doi.org/10.1007/BF0247442210.1007/BF02474422Search in Google Scholar

Burton CE, David RM, Portnoy WM, and Akers LA. The application of Bode analysis to skin impedance. Psychophysiology. 1974;11(4):517-25. http://dx.doi.org/10.1111/j.1469-8986.1974.tb00581.x485465510.1111/j.1469-8986.1974.tb00581.xBurtonCEDavidRMPortnoyWMAkersLAThe application of Bode analysis to skin impedancePsychophysiology197411451725http://dx.doi.org/10.1111/j.1469-8986.1974.tb00581.x4854655Search in Google Scholar

Van Valkenburg ME. Network Analysis, 3rd ed. Prentice-Hall, Englewood Cliffs, N.J, 1974.VanValkenburg MENetwork Analysis, 3rd edPrentice-HallEnglewood Cliffs, N.J1974Search in Google Scholar

Sosa M., Bernal-Alvarado J.. Magnetic field influence on electrical properties of human blood measured by impedance spectroscopy. Bioelectromagnetics. 2005;26(7):564–570. http://dx.doi.org/10.1002/bem.201321614278010.1002/bem.20132SosaM.Bernal-AlvaradoJ.Magnetic field influence on electrical properties of human blood measured by impedance spectroscopyBioelectromagnetics2005267564570http://dx.doi.org/10.1002/bem.2013216142780Search in Google Scholar

Fredix HM., Saris HM., Soeters PB., Wouters FM., and Kester DM. Estimation of body composition by bioelectrical impedance in cancer patients. European Journal of Clinical Nutrition. McMillan Press. 2009;44:749-752.FredixHM.SarisHM.SoetersPB.WoutersFM.KesterDMEstimation of body composition by bioelectrical impedance in cancer patientsEuropean Journal of Clinical Nutrition. McMillan Press200944749752Search in Google Scholar

Hernández F., Salazar CA., Bernal J. Determinación de las propiedades eléctricas en tejido sanguíneo. Ciencia UANL. 2007:510-515.HernándezF.SalazarCA.BernalJDeterminación de las propiedades eléctricas en tejido sanguíneoCiencia UANL2007510515Search in Google Scholar

Dorf RC and Svoboda JA. Circuitos eléctricos, 6 ed. Alfaomega, 2000.DorfRCSvobodaJACircuitos eléctricos, 6 edAlfaomega2000Search in Google Scholar

Cole KS. Permeability and impermeability of cell membranes for ions. Cold Spring Harbor Symp. Quant. Biol. 1940;8:110-122. http://dx.doi.org/10.1101/SQB.1940.008.01.01310.1101/SQB.1940.008.01.013ColeKSPermeability and impermeability of cell membranes for ionsCold Spring Harbor Symp. Quant. Biol19408110122http://dx.doi.org/10.1101/SQB.1940.008.01.013Open DOISearch in Google Scholar

Debye P. Polar Molecules. New York: Dover, 1945.DebyePPolar MoleculesNew YorkDover1945Search in Google Scholar

Casona Román M., Paul Torres S., and Casanova Bellido M. Bases físicas del análisis de la impedancia bioeléctrica. Vox pediátrica, 1999;7:139-143.CasonaRomán M.PaulTorres S.CasanovaBellido MBases físicas del análisis de la impedancia bioeléctricaVox pediátrica19997139143Search in Google Scholar

Wyss WJ. Math. Phys. 1986;27:2782. http://dx.doi.org/10.1063/1.52725110.1063/1.527251WyssWJMath. Phys1986272782http://dx.doi.org/10.1063/1.527251Open DOISearch in Google Scholar

Hilfer RJ. Phys. Chem. B. 2000;104:3851. http://dx.doi.org/10.1021/jp993432910.1021/jp9934329HilferRJPhys. Chem. B20001043851http://dx.doi.org/10.1021/jp9934329Open DOISearch in Google Scholar

Metzler R and Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach J. Phys. 2000;1:339.MetzlerRKlafterJThe random walk's guide to anomalous diffusion: a fractional dynamics approach JPhys2000133910.1016/S0370-1573(00)00070-3Search in Google Scholar

Samko SG., Kilbas AA., and Marichev OI. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach Science Publishers, Langhorne, PA, 1993.SamkoSG.KilbasAA.MarichevOIFractional Integrals and Derivatives, Theory and ApplicationsGordon and Breach Science PublishersLanghorne, PA1993Search in Google Scholar

Agrawal OP, Tenreiro-Machado JA., and Sabatier I. (Eds), Fractional Derivatives and Their Applications: Nonlinear Dynamics; 38, Springer-Verlag, Berlin 2004.AgrawalOPTenreiro-MachadoJA.SabatierI.Fractional Derivatives and Their Applications: Nonlinear Dynamics; 38Springer-VerlagBerlin200410.1007/s11071-004-3743-ySearch in Google Scholar

Hilfer RJ. (Ed.) Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.HilferRJApplications of Fractional Calculus in PhysicsWorld ScientificSingapore200010.1142/3779Search in Google Scholar

West BJ., Bologna M., and Grigolini P. Physics of Fractional Operators, Springer-Verlag, Berlin 2003. http://dx.doi.org/10.1007/978-0-387-21746-8WestBJ.BolognaM.GrigoliniPPhysics of Fractional OperatorsSpringer-VerlagBerlin2003http://dx.doi.org/10.1007/978-0-387-21746-810.1007/978-0-387-21746-8Search in Google Scholar

Magin RL. Fractional calculus in Bioengineering, Begell House Publisher, Rodding 2006.MaginRLFractional calculus in Bioengineering, Begell House PublisherRodding2006Search in Google Scholar

Ionescu CM and De Keyser R. Relations between Fractional-Order Model Parameters and Lung Pathology in Chronic Obstructive Pulmonary Disease. IEEE Trans. Biomed. Eng. 2009;56(4):978-987. http://dx.doi.org/10.1109/TBME.2008.20049661927293710.1109/TBME.2008.2004966IonescuCMDeKeyser RRelations between Fractional-Order Model Parameters and Lung Pathology in Chronic Obstructive Pulmonary DiseaseIEEE Trans. Biomed. Eng2009564978987http://dx.doi.org/10.1109/TBME.2008.200496619272937Search in Google Scholar

Ionescu CM, Muntean I, and Tenreiro-Machado JA, De Keyser R, and Abrudean M. A Theoretical Study on Modeling the Respiratory Tract with Ladder Networks by Means of Intrinsic Fractal Geometry. IEEE Trans. Biomed. Eng. 2010;57(2):246-253. http://dx.doi.org/10.1109/TBME.2009.203049610.1109/TBME.2009.203049619709953IonescuCMMunteanITenreiro-MachadoJADe KeyserRAbrudeanMA Theoretical Study on Modeling the Respiratory Tract with Ladder Networks by Means of Intrinsic Fractal GeometryIEEE Trans. Biomed. Eng2010572246253http://dx.doi.org/10.1109/TBME.2009.203049619709953Open DOISearch in Google Scholar

Ionescu CM., Tenreiro Machado JA., and De Keyser R. Modeling of the Lung Impedance Using a Fractional-Order Ladder Network with Constant Phase Elements. IEEE Trans. Biomed. Circuits Syst. 2011;5(1):83-89. http://dx.doi.org/10.1109/TBCAS.2010.207763610.1109/TBCAS.2010.207763623850980IonescuCM.TenreiroMachado JA.DeKeyser RModeling of the Lung Impedance Using a Fractional-Order Ladder Network with Constant Phase ElementsIEEE Trans. Biomed. Circuits Syst2011518389http://dx.doi.org/10.1109/TBCAS.2010.207763623850980Open DOISearch in Google Scholar

Caputo M and Mainardi F. A new dissipation model based on memory mechanism. Pure and Applied Geophysics. 1971;91:134-147. http://dx.doi.org/10.1007/BF0087956210.1007/BF00879562CaputoMMainardiFA new dissipation model based on memory mechanismPure and Applied Geophysics197191134147http://dx.doi.org/10.1007/BF00879562Open DOISearch in Google Scholar

Westerlund S. Causality. Report No. 940426. University of Kalmar, 1994.WesterlundSCausalityReport No. 940426University of Kalmar1994Search in Google Scholar

Mandelbrot B. The Fractal Geometry of Nature. Earth Surface Processes and Landforms. 1983;8(4):406-418.MandelbrotBThe Fractal Geometry of NatureEarth Surface Processes and Landforms19838440641810.1119/1.13295Search in Google Scholar

Oldham KK and Spanier J. The fractional Calculus. Academic Press, New York, 1974.OldhamKKSpanierJThe fractional CalculusAcademic PressNew York1974Search in Google Scholar

Miller KS and Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. John Willey and Sons, New York, 1993.MillerKSRossB.An Introduction to the Fractional Calculus and Fractional Differential EquationsJohn Willey and SonsNew York1993Search in Google Scholar

Baleanu D, Äunvenc ZBG., and Tenreiro Machado JA. New Trends in Nanotechnology and Fractional Calculus Applications. Springer, 2010. http://dx.doi.org/10.1007/978-90-481-3293-5BaleanuDÄunvencZBG.TenreiroMachado JANew Trends in Nanotechnology and Fractional Calculus ApplicationsSpringer2010http://dx.doi.org/10.1007/978-90-481-3293-510.1007/978-90-481-3293-5Search in Google Scholar

Podlubny I. Fractional Differential Equations. Academic Press, New York, 1999.PodlubnyIFractional Differential EquationsAcademic PressNewYork1999Search in Google Scholar

Diethelm K, Ford NJ, Freed AD, and Luchko Y. Algorithms for the Fractional Calculus: A selection of Numerical Methods, Comput. Methods Appl. Mech. Eng. 2005;194:743:773.DiethelmKFordNJFreedADLuchkoYAlgorithms for the Fractional Calculus: A selection of Numerical Methods, ComputMethods Appl. Mech. Eng2005194:74377310.1016/j.cma.2004.06.006Search in Google Scholar

Proakis JG and Manolakis DG. Digital signal processing, in Principles, Algorithms and Applications, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.ProakisJGManolakisDGDigital signal processingPrinciples, Algorithms and Applications3rd edUpper Saddle River, NJPrentice-Hall1996Search in Google Scholar

Ramirez A, Gómez P, Moreno P, and Gutierrez A. Frequency domain analysis of electromagnetic transients through the numerical Laplace transform. Presented at the IEEE General Meeting, Denver, CO, 2004.RamirezAGómezPMorenoPGutierrezAFrequency domain analysis of electromagnetic transients through the numerical Laplace transformPresented at the IEEE General MeetingDenver, CO200410.1109/PES.2004.1373022Search in Google Scholar

Wilcox DJ and Gibson IS. Numerical Laplace transformation and inversion in the analysis of physical systems. Int. J. Numer. Methods Eng. 1984;20:1507–1519. http://dx.doi.org/10.1002/nme.162020081210.1002/nme.1620200812WilcoxDJGibsonISNumerical Laplace transformation and inversion in the analysis of physical systemsInt. J. Numer. Methods Eng19842015071519http://dx.doi.org/10.1002/nme.1620200812Open DOISearch in Google Scholar

Moreno P and Ramirez A. Implementation of the numerical Laplace transform: a Review, IEEE Trans. Power Delivery. 2008;23(4):2599-2609. http://dx.doi.org/10.1109/TPWRD.2008.923404MorenoPRamirezAImplementation of the numerical Laplace transform: a Review, IEEE TransPower Delivery200823425992609http://dx.doi.org/10.1109/TPWRD.2008.92340410.1109/TPWRD.2008.923404Search in Google Scholar

Sheng H, Li Y, and Chen YQ. Application of numerical inverse Laplace transform algorithms in fractional calculus, J. Franklin Inst. 2011;348(2):315-330. http://dx.doi.org/10.1016/j.jfranklin.2010.11.00910.1016/j.jfranklin.2010.11.009ShengHLiYChenYQApplication of numerical inverse Laplace transform algorithms in fractional calculus, JFranklin Inst20113482315330http://dx.doi.org/10.1016/j.jfranklin.2010.11.009Open DOISearch in Google Scholar

Gómez JF, Rosales JJ, Bernal JJ, and Cordova T. Application of the Numerical Laplace Transform on the Simulation of Fractional Differential Equations. Prespacetime Journal. 2012;3(6):505-523.GómezJFRosalesJJBernalJJCordovaTApplication of the Numerical Laplace Transform on the Simulation of Fractional Differential EquationsPrespacetime Journal201236505523Search in Google Scholar

Qing-Li Y, Chen P, Haimovitz-Friedman A, Reilly RM, and Shun Wong C. Endothelial Apoptosis Initiates Acute Blood–Brain Barrier Disruption after Ionizing Radiation. Cancer Research. 2003;63:5950–5956. PMid:1452292114522921Qing-LiYChenPHaimovitz-FriedmanAReillyRMShunWong CEndothelial Apoptosis Initiates Acute Blood–Brain Barrier Disruption after Ionizing RadiationCancer Research20036359505956PMid:14522921Search in Google Scholar

Gabriely S, Lau RW, and Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996;41:2271–2293. http://dx.doi.org/10.1088/0031-9155/41/11/003GabrielySLauRWGabrielCThe dielectric properties of biological tissues: IIIParametric models for the dielectric spectrum of tissues. Phys. Med. Biol19964122712293http://dx.doi.org/10.1088/0031-9155/41/11/00310.1088/0031-9155/41/11/003Search in Google Scholar

Gómez JF, Rosales JJ, Bernal JJ, Tkach VI, Guía M., Sosa M, and Córdova T. RC Circuit of Non-integer Order. Symposium on Fractional Signals and Systems. 2011;14(4):61-67.GómezJFRosalesJJBernalJJTkachVIGuíaM.SosaMCórdovaTRC Circuit of Non-integer OrderSymposium on Fractional Signals and Systems20111446167Search in Google Scholar

Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. App. Anal. 2002;5(4):367-386.PodlubnyIGeometric and physical interpretation of fractional integration and fractional differentiationFract. Calc. App. Anal200254367386Search in Google Scholar

Moshre-Torbati M, and Hammond JK. Physical and geometrical interpretation of fractional operators. J. Franklin Inst. 1998;335B(6):1077-1086. http://dx.doi.org/10.1016/S0016-0032(97)00048-3Moshre-TorbatiMHammondJKPhysical geometrical interpretation of fractional operatorsJ. Franklin Inst1998335B610771086http://dx.doi.org/10.1016/S0016-0032(97)00048-310.1016/S0016-0032(97)00048-3Search in Google Scholar

eISSN:
1891-5469
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie