Uneingeschränkter Zugang

Improving Image Quality in Electrical Impedance Tomography (EIT) Using Projection Error Propagation-Based Regularization (PEPR) Technique: A Simulation Study


Zitieren

Webster J. G. Electrical impedance tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York, USA 1990.WebsterJ. GElectrical impedance tomographyAdam Hilger Series of Biomedical EngineeringAdam Hilger, New York, USA1990Search in Google Scholar

Denyer C. W. L. Electronics for Real-Time and Three-Dimensional Electrical Impedance Tomographs, PhD Thesis, Oxford Brookes University, January 1996.DenyerC. W. LElectronics for Real-Time and Three-Dimensional Electrical Impedance TomographsPhD ThesisOxford Brookes UniversityJanuary1996Search in Google Scholar

Metherall P. Three Dimensional Electrical Impedance Tomography of the Human Thorax, PhD Thesis, University of Sheffield. Jan’1998.MetherallPThree Dimensional Electrical Impedance Tomography of the Human ThoraxPhD ThesisUniversity of SheffieldJan’199810.1109/IEMBS.1996.651962Search in Google Scholar

Huang C. N., Yu F. M. and Chung H. Y. The Scanning Data Collection Strategy for Enhancing the Quality of Electrical Impedance Tomography. IEEE Trans. Instrument. Meas. 2008;57(6):1193-1198. 10.1109/TIM.2007.91514910.1109/TIM.2007.915149HuangC. N.YuF. M.ChungH. Y.The Scanning Data Collection Strategy for Enhancing the Quality of Electrical Impedance TomographyIEEE Trans. Instrument. Meas20085761193119810.1109/TIM.2007.915149Open DOISearch in Google Scholar

Bushberg J. T., Seibert J. A., Leidholdt Jr. E. M., Boone J. M. The Essential Physics of Medical Imaging, 2nd Edition, Lippincott Williams & Wilkins, ISBN-10: 0683301187. 2001.BushbergJ. T.SeibertJ. A.LeidholdtJr. E. M.BooneJ. MThe Essential Physics of Medical Imaging2nd EditionLippincott Williams & WilkinsISBN-10: 06833011872001Search in Google Scholar

Li Y., Rao L., He R., Xu G., Wu Q., Yan W., Dong G. and Yang Q. A Novel Combination Method of Electrical Impedance Tomography Inverse Problem for Brain Imaging. IEEE Trans. Magnetics. 2005;41(5):1848-1851. 10.1109/TMAG.2005.84650610.1109/TMAG.2005.846506LiY.RaoL.HeR.XuG.WuQ.YanW.DongG.YangQA Novel Combination Method of Electrical Impedance Tomography Inverse Problem for Brain Imaging. IEEE TransMagnetics20054151848185110.1109/TMAG.2005.846506Open DOISearch in Google Scholar

Brown B. H. Medical impedance tomography and process impedance tomography: a brief review. Measurement Science & Technology. 2001;12:991-996. 10.1088/0957-0233/12/8/30110.1088/0957-0233/12/8/301BrownB. HMedical impedance tomography and process impedance tomography: a brief reviewMeasurement Science & Technology20011299199610.1088/0957-0233/12/8/301Open DOISearch in Google Scholar

Linderholm P., Marescot L., Loke M. H. and Renaud P. Cell Culture Imaging Using Microimpedance Tomography. IEEE Trans. on Biomed. Eng. 2008;55(1):138-146. 10.1109/TBME.2007.91064910.1109/TBME.2007.910649LinderholmP.MarescotL.LokeM. H.RenaudPCell Culture Imaging Using Microimpedance TomographyIEEE Trans. on Biomed. Eng200855113814610.1109/TBME.2007.910649Open DOISearch in Google Scholar

Martinsen Ø. G., Kalvøy H., Grimnes S., Nordbotten B., Hol P. K., Fosse E., Myklebust H. and Becker L. B. Invasive Electrical Impedance Tomography for Blood Vessel Detection. The Open Biomed. Eng. J. 2010;4:135-137. 10.2174/187412070100401013510.2174/1874120701004010135MartinsenØ. G.KalvøyH.GrimnesS.NordbottenB.HolP. K.FosseE.MyklebustH.BeckerL. B.Invasive Electrical Impedance Tomography for Blood Vessel DetectionThe Open Biomed. Eng. J2010413513710.2174/1874120701004010135Open DOISearch in Google Scholar

Borsic A., Halter R., Wan Y., Hartov A. and Paulsen K. D. Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate. Physiol. Meas. 2010;31:S1–S16. 10.1088/0967-3334/31/8/S012064761910.1088/0967-3334/31/8/S01BorsicA.HalterR.WanY.HartovA.PaulsenK. D.Electrical impedance tomography reconstruction for three-dimensional imaging of the prostatePhysiol. Meas201031S1S1610.1088/0967-3334/31/8/S01Search in Google Scholar

Bagshaw A. P., Liston A. D., Bayford R. H., Tizzard A., Gibson A. P., Tidswell A. T., Sparkes M. K., Dehghani H., Binnie C. D. and Holder D. S. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. NeuroImage 2003;20:752–764. 10.1016/S1053-8119(03)00301-X1456844910.1016/S1053-8119(03)00301-XBagshawA. P.ListonA. D.BayfordR. H.TizzardA.GibsonA. P.TidswellA. T.SparkesM. K.DehghaniH.BinnieC. D.HolderD. S.Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element methodNeuroImage20032075276410.1016/S1053-8119(03)00301-XSearch in Google Scholar

Murphy D., Burton P., Coombs R., Tarassenko L. and Rolfe P. Impedance Imaging in the Newborn. Clin. Phys. Physiol. Meas. 1987;8(Suppl. A):131-40. 10.1088/0143-0815/8/4A/01710.1088/0143-0815/8/4A/0173568562MurphyD.BurtonP.CoombsR.TarassenkoL.RolfePImpedance Imaging in the NewbornClin. Phys. Physiol. Meas19878Suppl. A1314010.1088/0143-0815/8/4A/0173568562Open DOISearch in Google Scholar

Tyna H. A. and Iles S. E. Technology review: The use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Research. 2004;6(2):69-74.TynaH. A.IlesS. E.Technology review: The use of electrical impedance scanning in the detection of breast cancerBreast Cancer Research2004626974Search in Google Scholar

Moura F. S., Aya J. C. C., Fleury A. T., Amato M. B. P., and Lima R. G. Dynamic Imaging in Electrical Impedance Tomography of the Human Chest With Online Transition Matrix Identification. IEEE Trans. Biomed. Eng. 2010;57(2):422-431. 10.1109/TBME.2009.203252910.1109/TBME.2009.203252919789101MouraF. S.AyaJ. C. C.FleuryA. T.AmatoM. B. P.LimaR. G.Dynamic Imaging in Electrical Impedance Tomography of the Human Chest With Online Transition Matrix IdentificationIEEE Trans. Biomed. Eng201057242243110.1109/TBME.2009.203252919789101Open DOISearch in Google Scholar

Ferraioli F., Formisano A., and Martone R. Effective Exploitation of Prior Information in Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia Treatments. IEEE Trans. Magnetics. 2009;45(3):1554-1557. 10.1109/TMAG.2009.201274010.1109/TMAG.2009.2012740FerraioliF.FormisanoA.MartoneREffective Exploitation of Prior Information in Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia TreatmentsIEEE Trans. Magnetics20094531554155710.1109/TMAG.2009.2012740Open DOISearch in Google Scholar

McArdle F. J., Suggett A. J., Brown B. H., and Barber D. C. An assessment of dynamic images by applied potential tomography for monitoring pulmonary perfusion. Clin. Phys. Physiol. Meas. 1988;9(Suppl. A):87-91. 10.1088/0143-0815/9/4A/015324065610.1088/0143-0815/9/4A/015McArdleF. J.SuggettA. J.BrownB. H.BarberD. C.An assessment of dynamic images by applied potential tomography for monitoring pulmonary perfusionClin. Phys. Physiol. Meas19889Suppl. A879110.1088/0143-0815/9/4A/0153240656Search in Google Scholar

Hoetink A. E., Faes T. J. C., Marcus J. T., Kerkkamp H. J. J. and Heethaar R. M. Imaging of Thoracic Blood Volume Changes During the Heart Cycle With Electrical Impedance Using a Linear Spot-Electrode Array. IEEE Tran. on Med. Imaging. 2002;21(6):653-661. 10.1109/TMI.2002.80058210.1109/TMI.2002.800582HoetinkA. E.FaesT. J. C.MarcusJ. T.KerkkampH. J. J.HeethaarR. MImaging of Thoracic Blood Volume Changes During the Heart Cycle With Electrical Impedance Using a Linear Spot-Electrode ArrayIEEE Tran. on Med. Imaging200221665366110.1109/TMI.2002.80058212166862Open DOISearch in Google Scholar

Ferrer A. R. Z., Castro G. M., Gaona G. A., Aguillon M.A., Rosell F. P. J. and Carrera B. J. Electrical Impedance Tomography: An Electronic Design, with Adaptive Voltage Measurements and A Phantom Circuit for Research in The Epilepsy Field, Proceedings - 19th Internl Conf. - IEEE/EMBS Oct. 30 - Nov. 2, 1997, pp 867-868, USA.FerrerA. R. Z.CastroG. M.GaonaG. A.AguillonM.A.RosellF. P. J.CarreraB. JElectrical Impedance Tomography: An Electronic Design, with Adaptive Voltage Measurements and A Phantom Circuit for Research in The Epilepsy FieldProceedings - 19th Internl Conf. - IEEE/EMBS Oct. 30 - Nov. 21997867868USASearch in Google Scholar

Henderson R. P., Webster J. G. An impedance camera for spatially specific measurements of the thorax. IEEE Transactions on Biomedical Engineering. 1978;Bme-25(3):250-254. 10.1109/TBME.1978.32632910.1109/TBME.1978.326329HendersonR. P.WebsterJ. GAn impedance camera for spatially specific measurements of the thoraxIEEE Transactions on Biomedical Engineering1978Bme-25325025410.1109/TBME.1978.326329680754Open DOISearch in Google Scholar

Hou W. D., and Mo Y. L. Increasing image resolution in electrical impedance tomography. Electronics Letters. 2002;38:701-702. 10.1049/el:2002047710.1049/el:20020477HouW. D.MoY. L.Increasing image resolution in electrical impedance tomographyElectronics Letters20023870170210.1049/el:20020477Open DOISearch in Google Scholar

Lionheart W. R. B. EIT reconstruction algorithms: pitfalls, Review Article, challenges. Physiol. Meas. 2004;25:125–142. 10.1088/0967-3334/25/1/02110.1088/0967-3334/25/1/02115005311LionheartW. R. B.EIT reconstruction algorithms: pitfalls, Review Article, challengesPhysiol. Meas20042512514210.1088/0967-3334/25/1/02115005311Open DOISearch in Google Scholar

Wei. D. H. and Yu-Long M. New Regularization Method in Electrical Impedance Tomography. Journal of Shanghai University (English Edition) . 2002;6(3):211–215. 10.1007/s11741-002-0036-x10.1007/s11741-002-0036-xWeiD. HYu-LongM.New Regularization Method in Electrical Impedance TomographyJournal of Shanghai University (English Edition)20026321121510.1007/s11741-002-0036-xOpen DOISearch in Google Scholar

Vauhkonen M., Vadasz D., Karjalainen P. A., Somersalo E., and Kaipio J. P. Tikhonov Regularization and Prior Information in Electrical Impedance Tomography. IEEE Transactions on Medical Imaging. 1998;17(2):285-293. 10.1109/42.70074010.1109/42.7007409688160VauhkonenM.VadaszD.KarjalainenP. A.SomersaloE.KaipioJ. P. TikhonovRegularization and Prior Information in Electrical Impedance TomographyIEEE Transactions on Medical Imaging199817228529310.1109/42.7007409688160Open DOISearch in Google Scholar

B. W. Pogue, C. Willscher, T. O. McBride, U. L. Osterberg, and K. D. Paulsen. Contrast-detail analysis for detection and characterization with near-infrared diffuse tomography. Med. Phys. 2000;27:2693-2700. 10.1118/1.13239841119095210.1118/1.1323984PogueB. W.WillscherC.McBrideT. O.OsterbergU. L.PaulsenK. D.Contrast-detail analysis for detection and characterization with near-infrared diffuse tomographyMed. Phys2000272693270010.1118/1.132398411190952Search in Google Scholar

Niu H., Guo P., Ji L., Zhao Q. and Jiang T. Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method. Optics Express. 2008;16(17):12423. 10.1364/OE.16.0124231871147910.1364/OE.16.012423NiuH.GuoP.JiL.ZhaoQ.JiangTImproving image quality of diffuse optical tomography with a projection-error-based adaptive regularization methodOptics Express200816171242310.1364/OE.16.012423Search in Google Scholar

Polydorides N. and Lionheart W. R. B. A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Meas. Sci. Technol. 2002;13:1871–1883. 10.1088/0957-0233/13/12/31010.1088/0957-0233/13/12/310PolydoridesN.LionheartW. R. B. AMatlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software projectMeas. Sci. Technol2002131871188310.1088/0957-0233/13/12/310Open DOISearch in Google Scholar

Vauhkonen M., Lionheart W. R. B., L. M. Heikkinen, P. J. Vauhkonen, J. P. Kaipio. A Matlab package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 2001;22:107–111. 10.1088/0967-3334/22/1/31410.1088/0967-3334/22/1/31411236871VauhkonenM.LionheartW. R. B.HeikkinenL. M.VauhkonenP. J.KaipioJ. P.A Matlab package for the EIDORS project to reconstruct two dimensional EIT imagesPhysiol. Meas20012210711110.1088/0967-3334/22/1/31411236871Open DOISearch in Google Scholar

Bera T. K. and Nagaraju J. A Stainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT). Sensors & Transducers Journal. 2009;104(5):33-40.BeraT. K.NagarajuJ. AStainless Steel Electrode Phantom to Study the Forward Problem of Electrical Impedance Tomography (EIT)Sensors & Transducers Journal200910453340Search in Google Scholar

Bera T. K. and Nagaraju J. A Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver, 10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009), School of Mathematics, The University of Manchester, UK, 16th-19th June 2009.BeraT. K.NagarajuJA Reconfigurable Practical Phantom for Studying the 2 D Electrical Impedance Tomography (EIT) Using a FEM Based Forward Solver10th International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2009 School of MathematicsThe University of ManchesterUK16th-19th June 2009Search in Google Scholar

Bera T. K. and Nagaraju J. A Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT), Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, 5th - 7th May 2009, pp 511-516.BeraT. K.NagarajuJA Study of Practical Biological Phantoms with Simple Instrumentation for Electrical Impedance Tomography (EIT)Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009)Singapore5th - 7th May200951151610.1109/IMTC.2009.5168503Search in Google Scholar

Bera T. K. and Nagaraju J. Studying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode Geometries, Proceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–12, 2009, Munich, Germany, IFMBE Proceedings 25/II, pp. 925–929.BeraT. K.NagarajuJStudying the Boundary Data Profile of A Practical Phantom for Medical Electrical Impedance Tomography with Different Electrode GeometriesProceedings of The World Congress on Medical Physics and Biomedical Engineering-2009 Sept 7–122009Munich, GermanyIFMBE Proceedings 25/II, pp92592910.1007/978-3-642-03879-2_258Search in Google Scholar

Malmivuo J. and Plonsey R. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Chapter-26, Sec.-26.2.1, New York, Oxford University Press, 1995.MalmivuoJ.PlonseyR.Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fieldsChapter-26, Sec.-26.2.1New YorkOxford University Press199510.1093/acprof:oso/9780195058239.001.0001Search in Google Scholar

Bera T. K. and Nagaraju J. A Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode Phantom, Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), Bangalore, August 22 to 25, pp. 347-352.BeraT. K.NagarajuJA Simple Instrumentation Calibration Technique for Electrical Impedance Tomography (EIT) Using A 16 Electrode PhantomProceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009 Bangalore, August 22 to 25, pp34735210.1109/COASE.2009.5234117Search in Google Scholar

Brown B. H., Barber D. C., A. D. Seagar. Applied potential tomography: possible clinical applications. Clin. Phys. Physiol. Meas. 1985;6:109-121. 10.1088/0143-0815/6/2/00210.1088/0143-0815/6/2/0024017442BrownB. H.BarberD. C.SeagarA. D.Applied potential tomography: possible clinical applicationsClin. Phys. Physiol. Meas1985610912110.1088/0143-0815/6/2/0024017442Open DOISearch in Google Scholar

Graham B. M. Enhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung Imaging, PhD thesis, University of Ottawa, April 2007.GrahamB. MEnhancements in Electrical Impedance Tomography (EIT) Image Reconstruction for 3D Lung ImagingPhD thesisUniversity of OttawaApril2007Search in Google Scholar

Yorkey T. J. Comparing reconstruction methods for electrical impedance tomography, PhD thesis, University of. Wisconsin at Madison, Madison, WI 53706, 1986.YorkeyT. JComparing reconstruction methods for electrical impedance tomographyPhD thesisUniversity of. Wisconsin at Madison, MadisonWI 537061986Search in Google Scholar

Reddy J. N. An Introduction to the Finite Element Method, 3rd Ed., 2nd Reprint, TATA McGraw-Hill Pub. Co. Ltd, 2006.ReddyJ. NAn Introduction to the Finite Element Method3rd Ed., 2nd ReprintTATA McGraw-Hill Pub. Co. Ltd2006Search in Google Scholar

Biswas S. K., Rajan K., Vasu R. M. Interior photon absorption based adaptive regularization improves diffuse optical tomography, Proc. SPIE, Volume 7546, 754611 (2010). 10.1117/12.853421BiswasS. K.RajanK.VasuR. MInterior photon absorption based adaptive regularization improves diffuse optical tomography ProcSPIEVolume 7546754611201010.1117/12.853421Search in Google Scholar

Grootveld C. J. Measuring and Modeling of Concentrated Settling Suspensions Using Electrical Impedance Tomography, PhD Thesis, Delft University of Technology, The Netherlands, 1996.GrootveldC. JMeasuring and Modeling of Concentrated Settling Suspensions Using Electrical Impedance TomographyPhD ThesisDelft University of TechnologyThe Netherlands1996Search in Google Scholar

Arridge S. R. Optical tomography in medical imaging, Topical Review. Inverse Problems. 1999;15:R41–R93. 10.1088/0266-5611/15/2/02210.1088/0266-5611/15/2/022ArridgeS. ROptical tomography in medical imaging, Topical ReviewInverse Problems199915R41R9310.1088/0266-5611/15/2/022Open DOISearch in Google Scholar

Soleimani M., Yalavarthy P. K. and Dehghani H. Helmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomography. IEEE Trans. Instrum. Meas. 2010;59(1):78-83. 10.1109/TIM.2009.202164510.1109/TIM.2009.2021645SoleimaniM.YalavarthyP. K.DehghaniHHelmholtz-type regularization method for permittivity reconstruction using experimental phantom data of electrical capacitance tomographyIEEE Trans. Instrum. Meas2010591788310.1109/TIM.2009.2021645Open DOISearch in Google Scholar

M. Soleimani and W. R. B. Lionheart. Nonlinear image reconstruction in electrical capacitance tomography using experimental data. Meas. Sci. Technol., 2005;16(10):1987– 1996. 10.1088/0957-0233/16/10/014SoleimaniM.LionheartW. R. B.Nonlinear image reconstruction in electrical capacitance tomography using experimental dataMeas. Sci. Technol200516101987–199610.1088/0957-0233/16/10/01410.1088/0957-0233/16/10/014Search in Google Scholar

Chan T. F. and Tai X. C. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 2004;193(1):40– 66. 10.1016/j.jcp.2003.08.003ChanT. F.TaiX. C.Level set and total variation regularization for elliptic inverse problems with discontinuous coefficientsJ. Comput. Phys2004193140–6610.1016/j.jcp.2003.08.00310.1016/j.jcp.2003.08.003Search in Google Scholar

Bera T. K. and Nagaraju J. Resistivity Imaging of A Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance Tomography. Measurement. 2011;44(3):518-526. 10.1016/j.measurement.2010.11.01510.1016/j.measurement.2010.11.015BeraT. K.NagarajuJResistivity Imaging of A Reconfigurable Phantom With Circular Inhomogeneities in 2D-Electrical Impedance TomographyMeasurement201144351852610.1016/j.measurement.2010.11.015Open DOISearch in Google Scholar

Song X., Pogue B. W., Jiang S., Doyley M. M., Dehghani H., Tosteson T. D., and Paulsen K. D. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt. 2004;43:1053-1062. 10.1364/AO.43.0010531500848410.1364/AO.43.001053SongX.PogueB. W.JiangS.DoyleyM. M.DehghaniH.TostesonT. D.PaulsenK. D.Automated region detection based on the contrast-to-noise ratio in near-infrared tomographyAppl. Opt2004431053106210.1364/AO.43.00105315008484Search in Google Scholar

Kanmani B. and Vasu R. M. Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulations. Phys. Med. Biol. 2005;50:247–264. 10.1088/0031-9155/50/2/0051574294210.1088/0031-9155/50/2/005KanmaniB.VasuR. M.Diffuse optical tomography using intensity measurements and the a priori acquired regions of interest: theory and simulationsPhys. Med. Biol20055024726410.1088/0031-9155/50/2/00515742942Search in Google Scholar

Reyes M., Malandain G., Koulibaly P. M., González-Ballester M. A. and Darcourt J. Model-based respiratory motion compensation for emission tomography image reconstruction. Phys. Med. Biol. 2007;52:3579–3600. 10.1088/0031-9155/52/12/0161766456110.1088/0031-9155/52/12/016ReyesM.MalandainG.KoulibalyP. M.González-BallesterM. A.DarcourtJModel-based respiratory motion compensation for emission tomography image reconstructionPhys. Med. Biol2007523579360010.1088/0031-9155/52/12/01617664561Search in Google Scholar

eISSN:
1891-5469
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie