Uneingeschränkter Zugang

Transferrin and Lactoferrin – Human Iron Sources for Enterococci

   | 04. Dez. 2017

Zitieren

Brock J.H. and J. Ng. 1983. The effect of desferrixamine on growth of Staphylococcus aureus, Yersinia enterocolitica and Streptococcus faecalis in human serum: uptake of desferrioxamine-bound iron. FEMS Microbiol. Lett. 20: 439–442. Search in Google Scholar

Clarke T.E., L.W. Tari and H.J. Vogel. 2001. Structural biology of bacterial iron uptake systems. Curr. Top Med. Chem. 1: 7–30.10.2174/1568026013395623 Search in Google Scholar

Csaky T.Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450–454.10.3891/acta.chem.scand.02-0450 Search in Google Scholar

Deneer H.G., V. Healey and I. Boychuk 1995. Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp. Microbiol. 141: 1985–1992.10.1099/13500872-141-8-1985 Search in Google Scholar

Drechsel H. and G. Winkelman. 1997. Iron chelation and siderophores, pp. 1–49. In: Winkelman G. and C.J. Carrano (eds). Transition metals in microbial metabolism. Harwood Academic, Amsterdam. European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2017. MIC determination of non-fastidious and fastidious organisms. EUCAST Version 7. Search in Google Scholar

Fisher K. and C. Phillips. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiol. 155: 1749–1757. Search in Google Scholar

Fontecave M., J. Covès and J.L. Pierre. 1994. Ferric reductases or flavin reductases? Biometals 7: 3–8.10.1007/BF00205187 Search in Google Scholar

García-Montoya I.A., T.S. Cendón, S. Arévalo-Gallegos and Q. Rascón-Cruz. 2012. Lactoferrin a multiple bioactive protein: an overview. Biochim. Biophys. Acta. 1820: 226–236.10.1016/j.bbagen.2011.06.018 Search in Google Scholar

Gilmore M.S., F. Lebreton and W. van Schaik. 2013. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr. Opin. Microbiol. 16:10–16.10.1016/j.mib.2013.01.006 Search in Google Scholar

Harris W.R., C.J. Carrano, S.R. Cooper, S.R. Sofen, A.E Avdeef, J.V. McArdle and K.N. Raymond. 1979. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc.101: 6097–6104.10.1021/ja00514a037 Search in Google Scholar

Kanemitsu K., T. Nishino, H. Kunishima, N. Okamura, H. Takemura, H. Yamamoto and M. Kaku. 2001. Quantitative determination of gelatinase activity among enterococci. J. Microbiol. Methods 47: 11–16.10.1016/S0167-7012(01)00283-4 Search in Google Scholar

Krewulak K.D. and H.J. Vogel. 2008. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta 1778: 1781–1804.10.1016/j.bbamem.2007.07.02617916327 Search in Google Scholar

Kurth C., H. Kageb and M. Nett. 2016. Siderophores as molecular tools in medical and environmental applications. Org. Biomol. Chem. 14: 8212–8227.10.1039/C6OB01400C Search in Google Scholar

Lindsay J.A., T.V. Riley and B.J. Mee. 1995. Staphylococcus aureus but not Staphylococcus epidermidis can acquire iron from transferrin. Microbiol. 141: 197–203.10.1099/00221287-141-1-197 Search in Google Scholar

Lisiecki P., P. Wysocki and J. Mikucki. 1999. Occurrence of siderophores in enterococci. Zentralbl. Bakteriol. 289: 807–815.10.1016/S0934-8840(00)80006-7 Search in Google Scholar

Marcelis J.H., H.J. den Daas-Slagt and J.A. Hoogkamp-Korstanje. 1978. Iron requirement and chelator production of staphylococci, Streptococcus faecalis and Enterobacteriaceae. Antonie Van Leeuwenhoek 44: 257–267. Search in Google Scholar

Markwell M.A. 1982. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal. Biochem. 125: 427–432.10.1016/0003-2697(82)90025-2 Search in Google Scholar

Mietzner T.A. and S.A. Morse.1994. The role of iron-binding proteins in the survival of pathogenic bacteria. Annu. Rev. Nutr. 14: 471–493.10.1146/annurev.nu.14.070194.002351 Search in Google Scholar

Parker Siburt C.J., T.A. Mietzner and A.L. Crumbliss. 2012. FbpA-a bacterial transferrin with more to offer. Biochim. Biophys. Acta 1820: 379–392.10.1016/j.bbagen.2011.09.001 Search in Google Scholar

Ratledge C. and L.G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54: 881–941.10.1146/annurev.micro.54.1.881 Search in Google Scholar

Schröder I., E. Johnson and S. de Vries. 2003. Microbial ferric iron reductases. FEMS Microbiol. Rev. 27: 427–447.10.1016/S0168-6445(03)00043-3 Search in Google Scholar

Schwyn B. and J.B. Neilands. 1987. Universal chemical assay for detection and determination of siderophores. Anal. Biochem. 160: 47–56.10.1016/0003-2697(87)90612-9 Search in Google Scholar

Sheldon J.R., Laakso H.A. and Heinrichs D.E. 2016. Iron Acquisition Strategies of Bacterial Pathogens. Microbiol. Spectr. 4(2): 1–32. Search in Google Scholar

Sobiś-Glinkowska M., J. Mikucki and P. Lisiecki. 2001a. Animal body iron sources utilized in vitro by enterococci (in Polish). Med. Dosw. Mikrobiol. 53: 9–15. Search in Google Scholar

Sobiś-Glinkowska M., J. Mikucki and P. Lisiecki. 2001b. Influence of iron-restricted conditions on growth and hydroxamate siderophore release in enterococci. Acta Microbiol. Pol. 50:179–182. Search in Google Scholar

Strzelecki J., W. Hryniewicz and E. Sadowy. 2011.Gelatinase-associated phenotypes and genotypes among clinical isolates of Enterococcus faecalis in Poland. Pol. J. Microbiol. 60: 287–292.10.33073/pjm-2011-041 Search in Google Scholar

Styriak I., A. Lauková, V. Strompfová and A. Ljungh. 2004. Mode of binding of fibrinogen, fibronectin and iron-binding proteins by animal enterococci. Vet. Res. Commun. 28: 587–598. Search in Google Scholar

van Tyne D., M.J. Martin and M.S. Gilmore. 2013. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins 5: 895–911. Search in Google Scholar

Vartivarian S.E., and R.E. Cowart. 1999. Extracellular iron reductases: identification of a new class of enzymes by siderophore-producing microorganisms. Arch. Biochem. Biophys. 364: 75–82.10.1006/abbi.1999.110910087167 Search in Google Scholar

Weinberg E.D. 2009. Iron availability and infection. Biochim. Biophys. Acta 1790: 600–605.10.1016/j.bbagen.2008.07.00218675317 Search in Google Scholar

Williams P. and E. Griffiths. 1992. Bacterial transferrin receptors-structure, function and contribution to virulence. Med. Microbiol. Immunol. 181: 301–322. Search in Google Scholar

Yuen G.J. and F.M Ausubel. 2014. Enterococcus infection biology: lessons from invertebrate host models. J. Microbiol. 52: 200–210.10.1007/s12275-014-4011-6455628324585051 Search in Google Scholar

Zareba T.W., C. Pascu, W. Hryniewicz and T. Wadström. 1997. Binding of extracellular matrix proteins by enterococci. Curr. Microbiol. 34: 6–11.10.1007/s0028499001358939794 Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie