Zitieren

Agarwal A., K.P. Singh and A. Jain. 2010. Medical significance and management of staphylococcal biofilm. FEMS Immunol. Med. Microbiol. 58: 147–160.10.1111/j.1574-695X.2009.00601.x19793317 Search in Google Scholar

Anderson V.E, T.D. Gootz and N. Osheroff. 1998. Topoisomerase IV catalysis and the mechanism of quinolone action. J. Biol. Chem. 273: 17879–17885.10.1074/jbc.273.28.178799651393 Search in Google Scholar

Arciola C.R., D. Campoccia, S. Gamberini, M.E. Donati, V. Pirini, L. Visai, P. Speziale and L. Montanaro. 2005. Antibiotic resistance in expolysaccharide-forming Staphylococcus epidermidis clinical isolated from orthopedic implant infections. Biomaterial 26: 6530–6535.10.1016/j.biomaterials.2005.04.03115949842 Search in Google Scholar

Basarab G.S., J. Manchester, S. Bist, P.A. Boriack-Sjodin, B. Dan- gel, R. Illingworth, B.A. Sherer, S. Sriram, M. Uria-Nickelsen and A.E. Eakin. 2013. Fragment-to-hit-to-lead discovery of a novel pyridylurea scaffold of ATP competitive dual targeting type II topoisomerase inhibiting antibacterial agents. J. Med. Chem. 56: 8712–8735.10.1021/jm401208b24098982Search in Google Scholar

Bielenica A., J. Stefańska, K. Stępień, A. Napiórkowska, E. Augu- stynowicz-Kopeć, G. Sanna, S. Madeddu, S. Boi, G. Giliberti, M. Wrzosek and othres. 2015. Synthesis, cytotoxicity, antimicrobial activity of thiourea derivatives incorporatinf 3-(trifluoromethyl) phenyl moiety. Eur. J. Med. Chem. 101: 111–125. Search in Google Scholar

Bridier A., R. Brandet, V. Thomas and F. Dubois-Brissonnet. 2011. Resistance of bacterial biofilms to desinfectants: a review. Biofouling 27: 1017–1032.10.1080/08927014.2011.62689922011093 Search in Google Scholar

Chambers H.F. and F.R. DeLeo. 2009. Waves of resistance: Staphylococcus aureus in the antibiotic area. Nat. Rev. Microbiol. 7: 629–641.10.1038/nrmicro2200287128119680247Search in Google Scholar

Chikhalia K.H. and M.J. Patel. 2009. Design, synthesis and evaluation of some 1,3,5-triazinyl urea and thiourea derivatives as antimicrobial agents. J. Enz. Inhib. Med. Chem. 24: 960–966. Search in Google Scholar

Clinical and Laboratory Standards Institute (CLSI). 1999. Methods for determining bactericidal activity of antimicrobial agents – approved guideline M26-A. Wayne, Pennsylvania, USA. Search in Google Scholar

Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically – approved Standard M7-A9. Pennsylvania, USA. Search in Google Scholar

Costerton J.W., P.S. Stewart and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318–1322.10.1126/science.284.5418.131810334980 Search in Google Scholar

Cunha S., F.C. Macedo Jr., G.A.N Costa, M.T. Rodrigues Jr., R.B.V. Verde, L.C de Souza Neta, I. Vencato, C. Lariucci and F.P. Sá. 2007. Antimicrobial activity and structural study of disubstituted thiourea derivatives. Monatsh. Chem. 138: 511–516.10.1007/s00706-007-0600-y Search in Google Scholar

Donlan R.M. 2001. Biofilms and device – associated infections. Emerg. Infect. Disc. 7: 277–281.10.3201/eid0702.010226263170111294723 Search in Google Scholar

Donlan R.M. and J.W. Costerton. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167–193.10.1128/CMR.15.2.167-193.200211806811932229 Search in Google Scholar

Ehmann D.M. and S.D. Lahiri. 2014. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr. Opin. Pharmacol. 18: 76–83.10.1016/j.coph.2014.09.00725271174 Search in Google Scholar

Faidallah H.M., S.A. Rostom, S.A. Basaif, M.S. Makki and K.A. Khan. 2013. Synthesis and biological evaluation of some novel urea and thiourea derivatives of isoxazolo[4,5-d]pyridazine and structurally related thiazolo[4,5-d]pyridazine as antimicrobial agents. Arch. Pharm. Res. 36: 1354–1368. Search in Google Scholar

Fournier B., X. Zhao, T. Lu, K. Drlica and D.C. Hooper. 2000. Selective Targeting of Topoisomerase IV and DNA gyrase in Staphylococcus aureus: different patterns of quinolone-induced inhibition of DNA synthesis. Antimicrob. Agents Chemother. 44: 2160–2165.10.1128/AAC.44.8.2160-2165.20009002910898691Search in Google Scholar

Heczko P.B., M. Wróblewska and A. Pietrzyk (eds). 2014. Microbiology (in Polish). Wydawnictwo Lekarskie PZWL, Warszawa. Search in Google Scholar

Høiby N., T. Bjarnsholt, M. Givscov, S. Molin and O. Ciofu. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35: 322–332.10.1016/j.ijantimicag.2009.12.01120149602 Search in Google Scholar

Kada T., K. Hirano and Y. Shirasu. 1980. Bacillus subtilis recassay test. In: Seeres F.J. and A. Hollaender (eds). Chemical Mutagens 6: 149–173.10.1007/978-1-4613-3072-1_6 Search in Google Scholar

Keche A.P., G.D. Hatnapure, R.H. Tale, A.H. Rodge and V.M. Kamble. 2012. Synthesis, anti-inflammatory and antimicrobial evaluation of novel 1-acetyl-3,5-diaryl-4,5-dihydro (1H) pyrazole derivatives bearing urea, thiourea and sulfonamide moieties. Bioorg. Med. Chem. Lett. 22: 6611–6615.10.1016/j.bmcl.2012.08.11823026000 Search in Google Scholar

Leclercq R. 2009. Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin. Microbiol. Infect. 15: 224–231.10.1111/j.1469-0691.2009.02739.x19335370 Search in Google Scholar

Mack D., H. Rohde, L.G. Harris, A.P. Davies, M.A. Horstkotte and J.K. Knobloch. 2006. Biofilm formation in medical device-related infection. Int. J. Artif. Organs 29: 343–359.10.1177/03913988060290040416705603 Search in Google Scholar

Maki D.G., D.M. Kluger and C.J. Crinch. 2006. The risk of bloodstream infection in adults with different intravascular devices. A systematic review of 200 published prospective studies. Mayo Clin. Proc. 81: 1159–1171.10.4065/81.9.115916970212 Search in Google Scholar

Meng C., Y. Qingsong and S. Hongmin. 2013. Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci. 14: 18488–18501.10.3390/ijms140918488379479124018891 Search in Google Scholar

Mishra A. and S. Batra. 2013. Thiourea and guanidine derivatives as antimalarial and antimicrobial agents. Curr. Top. Med. Chem. 13: 2011–2025.10.2174/1568026611313999012623895095 Search in Google Scholar

Otto M. 2008. Staphylococcal biofilms. Curr. Top Microbiol. Immunol. 322: 207–228.10.1007/978-3-540-75418-3_10277753818453278 Search in Google Scholar

Otto M. 2009. Staphylococcus epidermidis – The “accidental” pathogen. Nat. Rev. Microbiol. 7: 555–557.10.1038/nrmicro2182280762519609257 Search in Google Scholar

Ranise A., A. Spallarossa, S. Schenone, O. Bruno, F. Bondavalli, L. Vargiu, T. Marceddu, M. Mura, P. La Colla and A. Pani. 2003. Design, synthesis, SAR, and molecular modeling studies of acylthiocarbamates: a novel series of potent non-nucleoside HIV-1 reverse transcriptase inhibitors structurally related to phenethylthiazolylthiourea derivatives. J. Med. Chem. 46: 768–781. Search in Google Scholar

Sadaie Y. and T. Kada. 1976. Recombination-deficient mutants of Bacillus subtilis. J. Bacteriol. 125: 489–500.10.1128/jb.125.2.489-500.1976236107812867 Search in Google Scholar

Saeed A., U. Shaheen, A. Hameed and S.H.Z. Naqvi. 2009. Synthesis, characterization and antimicrobial activity of some new 1-(fluoro- benzoyl)-3-(fluorophenyl)thioureas. J. Fluor. Chem. 130: 1028–1034. Search in Google Scholar

Saeed S., N. Rashid, P.G. Jones, M. Ali and R. Hussain. 2010. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 45: 1323–1331. Search in Google Scholar

Siwek A., P. Stączek and J. Stefańska. 2011. Synthesis and structureactivity relationship studies of 4-arylthiosemicarbazides as topoisomerase IV inhibitors with Gram-positive antibacterial activity. Search for molecular basis of antibacterial activity of thiosemicarbazides. Eur. J. Med. Chem. 46: 5717–5726.10.1016/j.ejmech.2011.09.03421978836 Search in Google Scholar

Stefańska J., G. Nowicka, Struga M, D. Szulczyk, A.E. Kozioł, E. Augustynowicz-Kopeć, A. Napiórkowska, A. Bielenica, W. Filipowski and others. 2015. Antimicrobial and anti-biofilm activity of thiourea derivatives incorporating a 2-aminothiazole scaffold. Chem. Pharm. Bull. 63: 1–12.10.1248/cpb.c14-0083725757494 Search in Google Scholar

Struga M., S. Rosołowski, J. Kossakowski and J. Stefańska. 2010. Synthesis and microbiological activity of thiourea derivatives of 4-azatricyclo[5.2.2.0(2,6)]undec-8-ene-3,5-dione. Arch. Pharm. Res. 33: 47–54. Search in Google Scholar

Suresha G.P., R. Suhas, W. Kapfo and D.C. Gowda. 2011. Urea/ thiourea derivatives of quinazolinone-lysine conjugates: synthesis and structure-activity relationships of a new series of antimicrobials. Eur. J. Med. Chem. 46: 2530–2540.10.1016/j.ejmech.2011.03.04121481990 Search in Google Scholar

Vega-Pérez J.M., I. Periñán, M. Argandoña, M. Vega-Holm, C. Palo-Nieto, E. Burgos-Morón, M. López-Lázaro, C. Vargas, J.J. Nieto and F. Iglesias-Guerra. 2012. Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: synthesis and in vitro antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 58: 591–612.10.1016/j.ejmech.2012.10.04223174318Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie