Uneingeschränkter Zugang

Enterobacter asburiae KUNi5, a Nickel Resistant Bacterium for Possible Bioremediation of Nickel Contaminated Sites


Zitieren

Ahemad M. and M.S. Khan. 2010. Plant growth promoting activities of phosphate solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia. J. Bio. Sci. 4: 88–95.10.5053/ejobios.2010.4.0.11 Search in Google Scholar

Altschul S.F., W. Gish, W. Miller, E.W. Myers and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 219: 403–410.10.1016/S0022-2836(05)80360-2 Search in Google Scholar

Anand P., J. Isar, S. Saran and R.K. Saxena. 2006. Bioaccumulation of copper by Trichoderma viride. Bioresour. Technol. 91: 1018–1025.10.1016/j.biortech.2005.04.04616324839 Search in Google Scholar

Burd G.I., G.D. Dixon and B.R. Glick. 2000. Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237–245.10.1139/w99-14310749537 Search in Google Scholar

Cecchie C.G.S. and C. Zanchi. 2005. Phytoremediation of soil polluted by nickel using agricultural crops. Environ. Manage. 36: 675–681.10.1007/s00267-004-0171-116215654 Search in Google Scholar

Cha J.S. and D.A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Aca. Sci. USA 88: 8915–8919.10.1073/pnas.88.20.8915526211924351 Search in Google Scholar

Das P., S. Sinha and S.K. Mukherjee. 2014. Nickel bioremidiation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Bioremed. J. 18(2): 169–177. Search in Google Scholar

Denton B. 2007. Advances in phytoremediation of heavy metals using plant growth promoting bacteria and fungi. MMG 445. Basic. Biotechnol. J. 3: 1–5. Search in Google Scholar

Desale P., D. Kashyap, N. Nawani, N. Nahar, A. Rahman, B. Kapadnis and A. Mandal. 2014. Biosorption of nickel by Lysini-bacillus sp. BA2 native to bauxite mine Search in Google Scholar

. Ecotoxicol. Environ. Saf. 107: 260–268. Search in Google Scholar

Dworken M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592–601.10.1128/jb.75.5.592-603.195829011513538930 Search in Google Scholar

Faisal M. and S. Hasnain. 2006. Plant growth promotion by Brevi-bacterium under chromium stress. Res. J. Bot. 1: 24–29.10.3923/rjb.2006.24.29 Search in Google Scholar

Fu C. and R.J. Maier. 1991. Competitive inhibition of an energydependent nickel transport system by divalent cations in Brady-rhizobium japonicum JH. Appl. Environ. Microbiol. 57: 3511–3516.10.1128/aem.57.12.3511-3516.19911840041785926 Search in Google Scholar

Gadd G.M. 1988. Accumulation of metals by microbes and algae. Biotechnology 60: 401–430. Search in Google Scholar

Hussein H., S.F. Ibrahim, K. Kandeel and H. Moawad. 2004. Biosorption of heavy metals from waste water using Pseudomonas sp. eJ. Biotechnol. 7(1). doi: 10.2225/vol7-issue1-fulltext-2.10.2225/vol7-issue1-fulltext-2 Search in Google Scholar

Jiang W., A. Saxena, B. Song, B.B. Ward, T.J. Beveridge and S.C.B. Myneni. 2004. Elucidation of functional groups on gram positive and gram negative bacterial surfaces using infrared spectroscopy. Langmuir 20: 11433–11442.10.1021/la049043+ Search in Google Scholar

Kaltwasser H. and W. Frings. 1980. Transport and metabolism of nickel in microorganisms, pp. 463–491. In: Nriagu J.O. (ed). Nickel in the environment. John Wiley & Sons, New York. Search in Google Scholar

Khodadoust A.P., K.R. Reddy and K. Maturi. 2004. Removal of nickel and phenanthrene from kaolin soil using different extractants. Environ. Eng. Sci. 21: 691–704.10.1089/ees.2004.21.691 Search in Google Scholar

Nies D.H. 1999. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730–750.10.1007/s002530051457 Search in Google Scholar

Patel J.S., C.P. Patel and K. Kalia. 2006. Isolation and characterization of nickel uptake by nickel resistant bacterial isolate (NiRBI). Biomed. Environ. Sci. 19: 297–301. Search in Google Scholar

Rajkumar M. and H. Freitas. 2008. Influence of metal resistantplant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71: 834–842.10.1016/j.chemosphere.2007.11.038 Search in Google Scholar

Salvador M., G. Carolina and E. Jose. 2007. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl. Environ. Microbiol. 73(19): 6001–6011. Search in Google Scholar

Sanders J.R., S.P. Mc Grath and T. Adams. 1987. Zn, Cu, and Ni concentration in soil extracts and crops grown on four soils treated with metal loaded sewage sludges. Environ. Pollut. 44: 193–210. Search in Google Scholar

Sar P., S.K. Kazy and S.P. Singh. 2001. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett. Appl. Microbiol. 32: 257–261.10.1046/j.1472-765X.2001.00878.x Search in Google Scholar

Sar P., S.K. Kazy, R.K. Asthana and S.P. Singh. 1998. Nickel uptake by Pseudomonas aeruginosa: role of modifying factors. Current. Microbiol. 37: 306–311.10.1007/s002849900383 Search in Google Scholar

Sau G.B., S. Chatterjee and S.K. Mukherjee. 2008. Isolation and characterization of a Cr(VI) reducing Bacillus firmus strain from industrial effluents. Pol. J. Microbiol. 57: 327–332. Search in Google Scholar

Schwyn B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical. Biochem. 160: 47–56.10.1016/0003-2697(87)90612-9 Search in Google Scholar

Singh S., M. Zacharias, S. Kalpana and S. Mishra. 2012. Heavy metal accumulation and distribution pattern in different vegetable crops. J. Environ. Chem. Ecotoxicol. 4(10): 170–177. Search in Google Scholar

Sosa-Morales M.E., F. Guevara-Lara, V.M. Martinez-Juarez and O. Paredes-Lopez. 1997. Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Appl. Microbiol. Biotechnol. 48: 726–729.10.1007/s002530051123 Search in Google Scholar

Vos P., G. Garrity, D. Jones, N.R. Krieg,W. Ludwig, F.A. Rainey, K.H. Schleifer and W. Whitman. 2009. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Vol. 3., Springer, New York, USA. Search in Google Scholar

Zhao H., H. Yan, S. Zhou, Y. Xue, C. Zhang, Lihuozhang, X. Dong, Q. Cui, Y. Zhang, B. Zhang and Z. Zhang. 2011. The growth promotion of mung bean (Phaseolus radiatus) by Enterobacter asburiae HPP16 in acidic soils. Afr. J. Biotechnol. 10(63): 13802–13814. Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie