Uneingeschränkter Zugang

Sestrins as modulators of aging processes and diseases related to age


Zitieren

Averous J., Fonseca B.D., Proud C.G.: Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1. Oncogene, 2008; 27: 1106–1113 AverousJ. FonsecaB.D. ProudC.G. Regulation of cyclin D1 expression by mTORC1 signaling requires eukaryotic initiation factor 4E-binding protein 1 Oncogene 2008 27 1106 1113 10.1038/sj.onc.121071517724476 Search in Google Scholar

Bae E.J., Xu J., Oh D.Y., Bandyopadhyay G., Lagakos W.S., Keshwani M., Olefsky J.M.: Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. J. Biol. Chem., 2012; 287: 18769–18780 BaeE.J. XuJ. OhD.Y. BandyopadhyayG. LagakosW.S. KeshwaniM. OlefskyJ.M. Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance J. Biol. Chem. 2012 287 18769 18780 10.1074/jbc.M112.365544336577522493495 Search in Google Scholar

Bae S.H., Sung S.H., Oh S.Y., Lim J.M., Lee S.K., Park Y.N., Lee H.E., Kang D., Rhee S.G.: Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab., 2013; 17: 73–84 BaeS.H. SungS.H. OhS.Y. LimJ.M. LeeS.K. ParkY.N. LeeH.E. KangD. RheeS.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage Cell Metab. 2013 17 73 84 10.1016/j.cmet.2012.12.00223274085 Search in Google Scholar

Blokh D., Stambler I.: The application of information theory for the research of aging and aging-related diseases. Prog. Neurobiol., 2017; 157: 158–173 BlokhD. StamblerI. The application of information theory for the research of aging and aging-related diseases Prog. Neurobiol. 2017 157 158 173 10.1016/j.pneurobio.2016.03.00527004830 Search in Google Scholar

Budanov A.V.: Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Anti-oxid. Redox Signal., 2011; 15: 1679–1690 BudanovA.V. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling Anti-oxid. Redox Signal. 2011 15 1679 1690 10.1089/ars.2010.3530315141920712410 Search in Google Scholar

Budanov A.V., Karin M.: p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell, 2008; 134: 451–460 BudanovA.V. KarinM. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling Cell 2008 134 451 460 10.1016/j.cell.2008.06.028275852218692468 Search in Google Scholar

Budanov A.V., Kovaleva I., Tokarchuk A., Zheltukhin A.O., Dalina A.A., Lyamzaev K.G., Haidurov A., Chumakov P.M.: Mitochondrial localization and function of SESN2. FASEB J., 2020; 34: 1 BudanovA.V. KovalevaI. TokarchukA. ZheltukhinA.O. DalinaA.A. LyamzaevK.G. HaidurovA. ChumakovP.M. Mitochondrial localization and function of SESN2 FASEB J. 2020 34 1 10.1096/fasebj.2020.34.s1.06567 Search in Google Scholar

Budanov A.V., Lee J.H., Karin M.: Stressin’ Sestrins take an aging fight. EMBO Mol. Med., 2010; 2: 388–400 BudanovA.V. LeeJ.H. KarinM. Stressin’ Sestrins take an aging fight EMBO Mol. Med. 2010 2 388 400 10.1002/emmm.201000097316621420878915 Search in Google Scholar

Budanov A.V., Shoshani T., Faerman A., Zelin E., Kamer I., Kalinski H., Gorodin S., Fishman A., Chajut A., Einat P., Skaliter R., Gudkov A.V., Chumakov P.M., Feinstein E.: Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene, 2002; 21: 6017–6031 BudanovA.V. ShoshaniT. FaermanA. ZelinE. KamerI. KalinskiH. GorodinS. FishmanA. ChajutA. EinatP. SkaliterR. GudkovA.V. ChumakovP.M. FeinsteinE. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability Oncogene 2002 21 6017 6031 10.1038/sj.onc.120587712203114 Search in Google Scholar

Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., León R.: Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther., 2016; 157: 84–104 BuendiaI. MichalskaP. NavarroE. GameiroI. EgeaJ. LeónR. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases Pharmacol. Ther. 2016 157 84 104 10.1016/j.pharmthera.2015.11.00326617217 Search in Google Scholar

Çelik H., Karahan H., Kelicen-Uğur P.: Effect of atorvastatin on Aβ1-42-induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. J. Pharm. Pharmacol., 2020; 72: 424–436 ÇelikH. KarahanH. Kelicen-UğurP. Effect of atorvastatin on Aβ1-42-induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures J. Pharm. Pharmacol. 2020 72 424 436 10.1111/jphp.1320831846093 Search in Google Scholar

Chai D., Wang G., Zhou Z., Yang H., Yu Z.: Insulin increases Sestrin 2 content by reducing its degradation through the PI3K/mTOR signaling pathway. Int. J. Endocrinol., 2015; 2015: 505849 ChaiD. WangG. ZhouZ. YangH. YuZ. Insulin increases Sestrin 2 content by reducing its degradation through the PI3K/mTOR signaling pathway Int. J. Endocrinol. 2015 2015 505849 10.1155/2015/505849435250925792980 Search in Google Scholar

Chan E.Y.: Regulation and function of uncoordinated-51 like kinase proteins. Antioxid. Redox Signal., 2012; 17: 775–785 ChanE.Y. Regulation and function of uncoordinated-51 like kinase proteins Antioxid. Redox Signal. 2012 17 775 785 10.1089/ars.2011.439622074133 Search in Google Scholar

Chen C.C., Jeon S.M., Bhaskar P.T., Nogueira V., Sundararajan D., Tonic I., Park Y., Hay N.: FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev. Cell, 2010; 18: 592–604 ChenC.C. JeonS.M. BhaskarP.T. NogueiraV. SundararajanD. TonicI. ParkY. HayN. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor Dev. Cell 2010 18 592 604 10.1016/j.devcel.2010.03.008303198420412774 Search in Google Scholar

Chen H., Wang X., Tong M., Wu D., Wu S., Chen J., Wang X., Wang X., Kang Y., Tang H., Tang C., Jiang W.: Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One, 2013; 8: e64757 ChenH. WangX. TongM. WuD. WuS. ChenJ. WangX. WangX. KangY. TangH. TangC. JiangW. Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy PLoS One 2013 8 e64757 10.1371/journal.pone.0064757366719723737997 Search in Google Scholar

Chen K.B., Xuan Y., Shi W.J., Chi F., Xing R., Zeng Y.C.: Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer. Am. J. Transl. Res., 2016; 8: 1903–1909 ChenK.B. XuanY. ShiW.J. ChiF. XingR. ZengY.C. Sestrin2 expression is a favorable prognostic factor in patients with non-small cell lung cancer Am. J. Transl. Res. 2016 8 1903 1909 Search in Google Scholar

Chen S.D., Yang J.L., Lin T.K., Yang D.I.: Emerging roles of sestrins in neurodegenerative diseases: Counteracting oxidative stress and beyond. J. Clin. Med., 2019; 8: 1001 ChenS.D. YangJ.L. LinT.K. YangD.I. Emerging roles of sestrins in neurodegenerative diseases: Counteracting oxidative stress and beyond J. Clin. Med. 2019 8 1001 10.3390/jcm8071001667888631324048 Search in Google Scholar

Chen Y.R., Zweier J.L.: Cardiac mitochondria and reactive oxygen species generation. Circ. Res., 2014; 114: 524–537 ChenY.R. ZweierJ.L. Cardiac mitochondria and reactive oxygen species generation Circ. Res. 2014 114 524 537 10.1161/CIRCRESAHA.114.300559411866224481843 Search in Google Scholar

Chen Y.S., Chen S.D., Wu C.L., Huang S.S., Yang D.I.: Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp. Neurol., 2014; 253: 63–71 ChenY.S. ChenS.D. WuC.L. HuangS.S. YangD.I. Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture Exp. Neurol. 2014 253 63 71 10.1016/j.expneurol.2013.12.00924368194 Search in Google Scholar

Cheung P.C., Salt I.P., Davies S.P., Hardie D.G., Carling D.: Characterization of AMP-activated protein kinase gamma-subunit iso-forms and their role in AMP binding. Biochem. J., 2000; 346: 659–669 CheungP.C. SaltI.P. DaviesS.P. HardieD.G. CarlingD. Characterization of AMP-activated protein kinase gamma-subunit iso-forms and their role in AMP binding Biochem. J. 2000 346 659 669 10.1042/bj3460659 Search in Google Scholar

Cordani M., Sánchez-Álvarez M., Strippoli R., Bazhin A.V., Donadelli M.: Sestrins at the interface of ROS control and autophagy regulation in health and disease. Oxid. Med. Cell. Longev., 2019; 2019: 1283075 CordaniM. Sánchez-ÁlvarezM. StrippoliR. BazhinA.V. DonadelliM. Sestrins at the interface of ROS control and autophagy regulation in health and disease Oxid. Med. Cell. Longev. 2019 2019 1283075 10.1155/2019/1283075653020931205582 Search in Google Scholar

Costanzo-Garvey D.L., Pfluger P.T., Dougherty M.K., Stock J.L., Boehm M., Chaika O., Fernandez M.R., Fisher K., Kortum R.L., Hong E.G., Jun J.Y., Ko H.J., Schreiner A., Volle D.J., Treece T. i wsp.: KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab., 2009; 10: 366–378 Costanzo-GarveyD.L. PflugerP.T. DoughertyM.K. StockJ.L. BoehmM. ChaikaO. FernandezM.R. FisherK. KortumR.L. HongE.G. JunJ.Y. KoH.J. SchreinerA. VolleD.J. TreeceT. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity Cell Metab. 2009 10 366 378 10.1016/j.cmet.2009.09.010 Search in Google Scholar

Crute B.E., Seefeld K., Gamble J., Kemp B.E., Witters L.A.: Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem., 1998; 273: 35347–35354 CruteB.E. SeefeldK. GambleJ. KempB.E. WittersL.A. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase J. Biol. Chem. 1998 273 35347 35354 10.1074/jbc.273.52.35347 Search in Google Scholar

Cuervo A.M., Macian F.: Autophagy and the immune function in aging. Curr. Opin. Immunol., 2014; 29: 97–104 CuervoA.M. MacianF. Autophagy and the immune function in aging Curr. Opin. Immunol. 2014 29 97 104 10.1016/j.coi.2014.05.006 Search in Google Scholar

Ding B., Parmigiani A., Yang C., Budanov A.V.: Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation. Cell Cycle, 2015; 14: 3231–3241 DingB. ParmigianiA. YangC. BudanovA.V. Sestrin2 facilitates death receptor-induced apoptosis in lung adenocarcinoma cells through regulation of XIAP degradation Cell Cycle 2015 14 3231 3241 10.1080/15384101.2015.1084447 Search in Google Scholar

Dong B., Xue R., Sun Y., Dong Y., Liu C.: Sestrin 2 attenuates neonatal rat cardiomyocyte hypertrophy induced by phenylephrine via inhibiting ERK1/2. Mol. Cell Biochem., 2017; 433: 113–123 DongB. XueR. SunY. DongY. LiuC. Sestrin 2 attenuates neonatal rat cardiomyocyte hypertrophy induced by phenylephrine via inhibiting ERK1/2 Mol. Cell Biochem. 2017 433 113 123 10.1007/s11010-017-3020-2 Search in Google Scholar

Fan W., Tang Z., Chen D., Moughon D., Ding X., Chen S., Zhu M., Zhong Q.: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy, 2010; 6: 614–621 FanW. TangZ. ChenD. MoughonD. DingX. ChenS. ZhuM. ZhongQ. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy Autophagy 2010 6 614 621 10.4161/auto.6.5.12189 Search in Google Scholar

Finkel T., Holbrook N.J.: Oxidants, oxidative stress and the biology of ageing. Nature, 2000; 408: 239–247 FinkelT. HolbrookN.J. Oxidants, oxidative stress and the biology of ageing Nature 2000 408 239 247 10.1038/35041687 Search in Google Scholar

Gabryel B., Kost A., Kasprowska D.: Neuronal autophagy in cerebral ischemia – a potential target for neuroprotective strategies? Pharmacol. Rep., 2012; 64: 1–15 GabryelB. KostA. KasprowskaD. Neuronal autophagy in cerebral ischemia – a potential target for neuroprotective strategies? Pharmacol. Rep. 2012 64 1 15 10.1016/S1734-1140(12)70725-9 Search in Google Scholar

Gkikas I., Petratou D., Tavernarakis N.: Longevity pathways and memory aging. Front Genet., 2014; 5: 155 GkikasI. PetratouD. TavernarakisN. Longevity pathways and memory aging Front Genet. 2014 5 155 10.3389/fgene.2014.00155404497124926313 Search in Google Scholar

Hardie D.G., Ross F.A., Hawley S.A.: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol., 2012; 13: 251–262 HardieD.G. RossF.A. HawleyS.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis Nat. Rev. Mol. Cell Biol. 2012 13 251 262 10.1038/nrm3311572648922436748 Search in Google Scholar

Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., Iemura S., Natsume T., Takehana K., Yamada N., Guan J.L., Oshiro N., Mizushima N.: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell, 2009; 20: 1981–1991 HosokawaN. HaraT. KaizukaT. KishiC. TakamuraA. MiuraY. IemuraS. NatsumeT. TakehanaK. YamadaN. GuanJ.L. OshiroN. MizushimaN. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy Mol. Biol. Cell 2009 20 1981 1991 10.1091/mbc.e08-12-1248266391519211835 Search in Google Scholar

Hou Y.S., Guan J.J., Xu H.D., Wu F., Sheng R., Qin Z.H.: Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation. Mol. Cell. Biol., 2015; 35: 2740–2751 HouY.S. GuanJ.J. XuH.D. WuF. ShengR. QinZ.H. Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation Mol. Cell. Biol. 2015 35 2740 2751 10.1128/MCB.00285-15450832526031332 Search in Google Scholar

Howell J.J., Manning B.D.: mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol. Metab., 2011; 22: 94–102 HowellJ.J. ManningB.D. mTOR couples cellular nutrient sensing to organismal metabolic homeostasis Trends Endocrinol. Metab. 2011 22 94 102 10.1016/j.tem.2010.12.003374436721269838 Search in Google Scholar

Hwang H.J., Jung T.W., Choi J.H., Lee H.J., Chung H.S., Seo J.A., Kim S.G., Kim N.H., Choi K.M., Choi D.S., Baik S.H., Yoo H.J.: Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism. Biochim. Biophys. Acta, 2017; 1863: 1436–1444 HwangH.J. JungT.W. ChoiJ.H. LeeH.J. ChungH.S. SeoJ.A. KimS.G. KimN.H. ChoiK.M. ChoiD.S. BaikS.H. YooH.J. Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism Biochim. Biophys. Acta 2017 1863 1436 1444 10.1016/j.bbadis.2017.02.01828215577 Search in Google Scholar

Hybertson B.M., Gao B., Bose S.K., McCord J.M.: Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Aspects Med., 2011; 32: 234–246 HybertsonB.M. GaoB. BoseS.K. McCordJ.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation Mol. Aspects Med. 2011 32 234 246 10.1016/j.mam.2011.10.00622020111 Search in Google Scholar

Inoki K., Guan K.L.: Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum. Mol. Genet., 2009; 18: R94–R100 InokiK. GuanK.L. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment Hum. Mol. Genet. 2009 18 R94 R100 10.1093/hmg/ddp032265794519297407 Search in Google Scholar

Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.L.: The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol., 2013; 1: 45–49 KansanenE. KuosmanenS.M. LeinonenH. LevonenA.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer Redox Biol. 2013 1 45 49 10.1016/j.redox.2012.10.001375766524024136 Search in Google Scholar

Karpińska A., Gromadzka G.: Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych. Postępy Hig. Med. Dośw., 2013; 67: 43–53 KarpińskaA. GromadzkaG. Stres oksydacyjny i naturalne mechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji. Od mechanizmów molekularnych do strategii terapeutycznych Postępy Hig. Med. Dośw. 2013 67 43 53 10.5604/17322693.102953023475482 Search in Google Scholar

Kim G.T., Lee S.H., Kim Y.M.: Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells. J. Cancer Prev., 2013; 18: 264–270 KimG.T. LeeS.H. KimY.M. Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increased intracellular ROS in HCT116 colon cancer cells J. Cancer Prev. 2013 18 264 270 10.15430/JCP.2013.18.3.264 Search in Google Scholar

Kim H., An S., Ro S.H., Teixeira F., Park G.J., Kim C., Cho C.S., Kim J.S., Jakob U., Lee J.H., Cho U.S.: Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat. Commun., 2015; 6: 10025 KimH. AnS. RoS.H. TeixeiraF. ParkG.J. KimC. ChoC.S. KimJ.S. JakobU. LeeJ.H. ChoU.S. Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains Nat. Commun. 2015 6 10025 10.1038/ncomms10025467468726612684 Search in Google Scholar

Kim H., Yin K., Falcon D.M., Xue X.: The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth. Toxicol. Appl. Pharmacol., 2019; 374: 77–85 KimH. YinK. FalconD.M. XueX. The interaction of Hemin and Sestrin2 modulates oxidative stress and colon tumor growth Toxicol. Appl. Pharmacol. 2019 374 77 85 10.1016/j.taap.2019.04.025661336431054940 Search in Google Scholar

Kim J., Kundu M., Viollet B., Guan K.L.: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011; 13: 132–141 KimJ. KunduM. ViolletB. GuanK.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nat. Cell Biol. 2011 13 132 141 10.1038/ncb2152398794621258367 Search in Google Scholar

Kim M., Sujkowski A., Namkoong S., Gu B., Cobb T., Kim B., Kowalsky A.H., Cho C.S., Semple I., Ro S.H., Davis C., Brooks S.V., Karin M., Wessells R.J., Lee J.H.: Sestrins are evolutionarily conserved mediators of exercise benefits. Nat. Commun., 2020; 11: 190 KimM. SujkowskiA. NamkoongS. GuB. CobbT. KimB. KowalskyA.H. ChoC.S. SempleI. RoS.H. DavisC. BrooksS.V. KarinM. WessellsR.J. LeeJ.H. Sestrins are evolutionarily conserved mediators of exercise benefits Nat. Commun. 2020 11 190 10.1038/s41467-019-13442-5695524231929512 Search in Google Scholar

Kim M.J., Bae S.H., Ryu J.C., Kwon Y., Oh J.H., Kwon J., Moon J.S., Kim K., Miyawaki A., Lee M.G., Shin J., Kim Y.S., Kim C.H., Ryter S.W., Choi A.M. i wsp.: SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy, 2016; 12: 1272–1291 KimM.J. BaeS.H. RyuJ.C. KwonY. OhJ.H. KwonJ. MoonJ.S. KimK. MiyawakiA. LeeM.G. ShinJ. KimY.S. KimC.H. RyterS.W. ChoiA.M. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages Autophagy 2016 12 1272 1291 10.1080/15548627.2016.1183081496823727337507 Search in Google Scholar

Kovaleva I.E., Tokarchuk A.V., Zheltukhin A.O., Dalina A.A., Safronov G.G., Evstafieva A.G., Lyamzaev K.G., Chumakov P.M., Budanov A.V.: Mitochondrial localization of SESN2. PLoS One, 2020; 15: e0226862 KovalevaI.E. TokarchukA.V. ZheltukhinA.O. DalinaA.A. SafronovG.G. EvstafievaA.G. LyamzaevK.G. ChumakovP.M. BudanovA.V. Mitochondrial localization of SESN2 PLoS One 2020 15 e0226862 10.1371/journal.pone.0226862715609932287270 Search in Google Scholar

Laplante M., Sabatini D.M.: mTOR signaling at a glance. J. Cell Sci., 2009; 122: 3589–3594 LaplanteM. SabatiniD.M. mTOR signaling at a glance J. Cell Sci. 2009 122 3589 3594 10.1242/jcs.051011275879719812304 Search in Google Scholar

Lee J.H., Budanov A.V., Karin M.: Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab., 2013; 18: 792–801 LeeJ.H. BudanovA.V. KarinM. Sestrins orchestrate cellular metabolism to attenuate aging Cell Metab. 2013 18 792 801 10.1016/j.cmet.2013.08.018385844524055102 Search in Google Scholar

Lee J.H., Budanov A.V., Park E.J., Birse R., Kim T.E., Perkins G.A., Ocorr K., Ellisman M.H., Bodmer R., Bier E., Karin M.: Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science, 2010; 327: 1223–1228 LeeJ.H. BudanovA.V. ParkE.J. BirseR. KimT.E. PerkinsG.A. OcorrK. EllismanM.H. BodmerR. BierE. KarinM. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies Science 2010 327 1223 1228 10.1126/science.1182228286663220203043 Search in Google Scholar

Lee J.H., Budanov A.V., Talukdar S., Park E.J., Park H.L., Park H.W., Bandyopadhyay G., Li N., Aghajan M., Jang I., Wolfe A.M., Perkins G.A., Ellisman M.H., Bier E., Scadeng M. i wsp.: Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab., 2012; 16: 311–321 LeeJ.H. BudanovA.V. TalukdarS. ParkE.J. ParkH.L. ParkH.W. BandyopadhyayG. LiN. AghajanM. JangI. WolfeA.M. PerkinsG.A. EllismanM.H. BierE. ScadengM. Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3 Cell Metab. 2012 16 311 321 10.1016/j.cmet.2012.08.004368736522958918 Search in Google Scholar

Liao H.H., Ruan J.Y., Liu H.J., Liu Y., Feng H., Tang Q.Z.: Sestrin family may play important roles in the regulation of cardiac pathophysiology. Int. J. Cardiol., 2016; 202: 183–184 LiaoH.H. RuanJ.Y. LiuH.J. LiuY. FengH. TangQ.Z. Sestrin family may play important roles in the regulation of cardiac pathophysiology Int. J. Cardiol. 2016 202 183 184 10.1016/j.ijcard.2015.08.16426397406 Search in Google Scholar

Liu G.Y., Sabatini D.M.: mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol., 2020; 21: 183–203 LiuG.Y. SabatiniD.M. mTOR at the nexus of nutrition, growth, ageing and disease Nat. Rev. Mol. Cell Biol. 2020 21 183 203 10.1038/s41580-019-0199-y710293631937935 Search in Google Scholar

Liu X., Niu Y., Yuan H., Huang J., Fu L.: AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism, 2015; 64: 658–665 LiuX. NiuY. YuanH. HuangJ. FuL. AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy Metabolism 2015 64 658 665 10.1016/j.metabol.2015.01.01525672217 Search in Google Scholar

López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G.: The hallmarks of aging. Cell, 2013; 153: 1194–1217 López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging Cell 2013 153 1194 1217 10.1016/j.cell.2013.05.039383617423746838 Search in Google Scholar

Mamane Y., Petroulakis E., Rong L., Yoshida K., Ler L.W., Sonenberg N.: eIF4E – from translation to transformation. Oncogene, 2004; 23: 3172–3179 MamaneY. PetroulakisE. RongL. YoshidaK. LerL.W. SonenbergN. eIF4E – from translation to transformation Oncogene 2004 23 3172 3179 10.1038/sj.onc.120754915094766 Search in Google Scholar

Miki Y., Tanji K., Mori F., Utsumi J., Sasaki H., Kakita A., Takahashi H., Wakabayashi K.: Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging. Neurosci. Lett., 2018; 684: 35–41 MikiY. TanjiK. MoriF. UtsumiJ. SasakiH. KakitaA. TakahashiH. WakabayashiK. Autophagy mediators (FOXO1, SESN3 and TSC2) in Lewy body disease and aging Neurosci. Lett. 2018 684 35 41 10.1016/j.neulet.2018.06.05229966750 Search in Google Scholar

Mizushima N.: Autophagy: Process and function. Genes Dev., 2007; 21: 2861–2873 MizushimaN. Autophagy: Process and function Genes Dev. 2007 21 2861 2873 10.1101/gad.159920718006683 Search in Google Scholar

Morrison A., Chen L., Wang J., Zhang M., Yang H., Ma Y., Budanov A., Lee J.H., Karin M., Li J.: Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J., 2015; 29: 408–417 MorrisonA. ChenL. WangJ. ZhangM. YangH. MaY. BudanovA. LeeJ.H. KarinM. LiJ. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart FASEB J. 2015 29 408 417 10.1096/fj.14-258814431422825366347 Search in Google Scholar

Niture S.K., Khatri R., Jaiswal A.K.: Regulation of Nrf2 – an update. Free Radic. Biol. Med., 2014; 66: 36–44 NitureS.K. KhatriR. JaiswalA.K. Regulation of Nrf2 – an update Free Radic. Biol. Med. 2014 66 36 44 10.1016/j.freeradbiomed.2013.02.008377328023434765 Search in Google Scholar

Oakhill J.S., Scott J.W., Kemp B.E.: AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol. Metab., 2012; 23: 125–132 OakhillJ.S. ScottJ.W. KempB.E. AMPK functions as an adenylate charge-regulated protein kinase Trends Endocrinol. Metab. 2012 23 125 132 10.1016/j.tem.2011.12.00622284532 Search in Google Scholar

Ozcan U., Cao Q., Yilmaz E., Lee A.H., Iwakoshi N.N., Ozdelen E., Tuncman G., Görgün C., Glimcher L.H., Hotamisligil G.S.: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 2004; 306: 457–461 OzcanU. CaoQ. YilmazE. LeeA.H. IwakoshiN.N. OzdelenE. TuncmanG. GörgünC. GlimcherL.H. HotamisligilG.S. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes Science 2004 306 457 461 10.1126/science.110316015486293 Search in Google Scholar

Piantadosi C.A., Carraway M.S., Babiker A., Suliman H.B.: Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res., 2008; 103: 1232–1240 PiantadosiC.A. CarrawayM.S. BabikerA. SulimanH.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1 Circ. Res. 2008 103 1232 1240 10.1161/01.RES.0000338597.71702.ad269496318845810 Search in Google Scholar

Pickard L., Palladino G., Okosun J.: Follicular lymphoma genomics. Leuk. Lymphoma, 2020; 61: 2313–2323 PickardL. PalladinoG. OkosunJ. Follicular lymphoma genomics Leuk. Lymphoma 2020 61 2313 2323 10.1080/10428194.2020.176288332427008 Search in Google Scholar

Polewska J.: Autofagia – mechanizm molekularny, apoptoza i nowotwory. Postępy Hig. Med. Dośw., 2012; 66: 921–936 PolewskaJ. Autofagia – mechanizm molekularny, apoptoza i nowotwory Postępy Hig. Med. Dośw. 2012 66 921 936 10.5604/17322693.102110923175348 Search in Google Scholar

Quan N., Wang L., Chen X., Luckett C., Cates C., Rousselle T., Zheng Y., Li J.: Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway. J. Mol. Cell. Cardiol., 2018; 115: 170–178 QuanN. WangL. ChenX. LuckettC. CatesC. RousselleT. ZhengY. LiJ. Sestrin2 prevents age-related intolerance to post myocardial infarction via AMPK/PGC-1α pathway J. Mol. Cell. Cardiol. 2018 115 170 178 10.1016/j.yjmcc.2018.01.005582013929325933 Search in Google Scholar

Rai N., Dey S.: Protective response of Sestrin under stressful conditions in aging. Ageing Res. Rev., 2020; 64: 101186 RaiN. DeyS. Protective response of Sestrin under stressful conditions in aging Ageing Res. Rev. 2020 64 101186 10.1016/j.arr.2020.10118632992045 Search in Google Scholar

Reznick R.M., Zong H., Li J., Morino K., Moore I.K., Yu H.J., Liu Z.X., Dong J., Mustard K.J., Hawley S.A., Befroy D., Pypaert M., Hardie D.G., Young L.H., Shulman G.I.: Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab., 2007; 5: 151–156 ReznickR.M. ZongH. LiJ. MorinoK. MooreI.K. YuH.J. LiuZ.X. DongJ. MustardK.J. HawleyS.A. BefroyD. PypaertM. HardieD.G. YoungL.H. ShulmanG.I. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis Cell Metab. 2007 5 151 156 10.1016/j.cmet.2007.01.008188596417276357 Search in Google Scholar

Ro S.H., Semple I.A., Park H., Park H., Park H.W., Kim M., Kim J.S., Lee J.H.: Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J., 2014; 281: 3816–3827 RoS.H. SempleI.A. ParkH. ParkH. ParkH.W. KimM. KimJ.S. LeeJ.H. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1 FEBS J. 2014 281 3816 3827 10.1111/febs.12905415653225040165 Search in Google Scholar

Sablina A.A.., Budanov A.V., Ilyinskaya G.V., Agapova L.S., Kravchenko J.E., Chumakov P.M.: The antioxidant function of the p53 tumor suppressor. Nat. Med., 2005; 11: 1306–1313 SablinaA.A. BudanovA.V. IlyinskayaG.V. AgapovaL.S. KravchenkoJ.E. ChumakovP.M. The antioxidant function of the p53 tumor suppressor Nat. Med. 2005 11 1306 1313 10.1038/nm1320263782116286925 Search in Google Scholar

Sánchez-Álvarez M., Strippoli R., Donadelli M., Bazhin A.V., Cordani M.: Sestrins as a therapeutic bridge between ROS and autophagy in cancer. Cancers, 2019; 11: 1415 Sánchez-ÁlvarezM. StrippoliR. DonadelliM. BazhinA.V. CordaniM. Sestrins as a therapeutic bridge between ROS and autophagy in cancer Cancers 2019 11 1415 10.3390/cancers11101415682714531546746 Search in Google Scholar

Sanli T., Linher-Melville K., Tsakiridis T., Singh G.: Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS One, 2012; 7: e32035 SanliT. Linher-MelvilleK. TsakiridisT. SinghG. Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells PLoS One 2012 7 e32035 10.1371/journal.pone.0032035328279222363791 Search in Google Scholar

Saxton R.A., Knockenhauer K.E., Wolfson R.L., Chantranupong L., Pacold M.E., Wang T., Schwartz T.U., Sabatini D.M.: Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science, 2016; 351: 53–58 SaxtonR.A. KnockenhauerK.E. WolfsonR.L. ChantranupongL. PacoldM.E. WangT. SchwartzT.U. SabatiniD.M. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway Science 2016 351 53 58 10.1126/science.aad2087469803926586190 Search in Google Scholar

Shaw R.J.: LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol., 2009; 196: 65–80 ShawR.J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth Acta Physiol. 2009 196 65 80 10.1111/j.1748-1716.2009.01972.x276030819245654 Search in Google Scholar

Shin B.Y., Jin S.H., Cho I.J., Ki S.H.: Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic. Biol. Med., 2012; 53: 834–841 ShinB.Y. JinS.H. ChoI.J. KiS.H. Nrf2-ARE pathway regulates induction of Sestrin-2 expression Free Radic. Biol. Med. 2012 53 834 841 10.1016/j.freeradbiomed.2012.06.02622749810 Search in Google Scholar

Sun G., Xue R., Yao F., Liu D., Huang H., Chen C., Li Y., Zeng J., Zhang G., Dong Y., Liu C.: The critical role of Sestrin 1 in regulating the proliferation of cardiac fibroblasts. Arch. Biochem. Biophys., 2014; 542: 1–6 SunG. XueR. YaoF. LiuD. HuangH. ChenC. LiY. ZengJ. ZhangG. DongY. LiuC. The critical role of Sestrin 1 in regulating the proliferation of cardiac fibroblasts Arch. Biochem. Biophys. 2014 542 1 6 10.1016/j.abb.2013.11.01124315959 Search in Google Scholar

Sun W., Wang Y., Zheng Y., Quan N.: The emerging role of sestrin2 in cell metabolism, and cardiovascular and age-related diseases. Aging Dis., 2020; 11: 154–163 SunW. WangY. ZhengY. QuanN. The emerging role of sestrin2 in cell metabolism, and cardiovascular and age-related diseases Aging Dis. 2020 11 154 163 10.14336/AD.2019.0320696176532010489 Search in Google Scholar

Tao R., Xiong X., Liangpunsakul S., Dong X.C.: Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes, 2015; 64: 1211–1223 TaoR. XiongX. LiangpunsakulS. DongX.C. Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling Diabetes 2015 64 1211 1223 10.2337/db14-0539437508225377878 Search in Google Scholar

Velasco-Miguel S., Buckbinder L., Jean P., Gelbert L., Talbott R., Laidlaw J., Seizinger B., Kley N.: PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene, 1999; 18: 127–137 Velasco-MiguelS. BuckbinderL. JeanP. GelbertL. TalbottR. LaidlawJ. SeizingerB. KleyN. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes Oncogene 1999 18 127 137 10.1038/sj.onc.12022749926927 Search in Google Scholar

Wei J.L., Fu Z.X., Fang M., Guo J.B., Zhao Q.N., Lu W.D., Zhou Q.Y.: Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol. Rep., 2015; 33: 1349–1357 WeiJ.L. FuZ.X. FangM. GuoJ.B. ZhaoQ.N. LuW.D. ZhouQ.Y. Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer Oncol. Rep. 2015 33 1349 1357 10.3892/or.2014.370125572852 Search in Google Scholar

Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., Scaria S.M., Cantor J.R., Sabatini D.M.: Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 2016; 351: 43–48 WolfsonR.L. ChantranupongL. SaxtonR.A. ShenK. ScariaS.M. CantorJ.R. SabatiniD.M. Sestrin2 is a leucine sensor for the mTORC1 pathway Science 2016 351 43 48 10.1126/science.aab2674469801726449471 Search in Google Scholar

Wullschleger S., Loewith R., Hall M.N.: TOR signaling in growth and metabolism. Cell, 2006; 124: 471–484 WullschlegerS. LoewithR. HallM.N. TOR signaling in growth and metabolism Cell 2006 124 471 484 10.1016/j.cell.2006.01.01616469695 Search in Google Scholar

Xie M., Zhang D., Dyck J.R., Li Y., Zhang H., Morishima M., Mann D.L., Taffet G.E., Baldini A., Khoury D.S., Schneider M.D.: A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. USA, 2006; 103: 17378–17383 XieM. ZhangD. DyckJ.R. LiY. ZhangH. MorishimaM. MannD.L. TaffetG.E. BaldiniA. KhouryD.S. SchneiderM.D. A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway Proc. Natl. Acad. Sci. USA 2006 103 17378 17383 10.1073/pnas.0604708103185993717085580 Search in Google Scholar

Xu Y.P., Han F., Tan J.: Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway. Mol. Med. Rep., 2017; 16: 9210–9216 XuY.P. HanF. TanJ. Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway Mol. Med. Rep. 2017 16 9210 9216 10.3892/mmr.2017.773929039497 Search in Google Scholar

Xue R., Zeng J., Chen Y., Chen C., Tan W., Zhao J., Dong B., Sun Y., Dong Y., Liu C.: Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation. J. Cell. Mol. Med., 2017; 21: 1193–1205 XueR. ZengJ. ChenY. ChenC. TanW. ZhaoJ. DongB. SunY. DongY. LiuC. Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation J. Cell. Mol. Med. 2017 21 1193 1205 10.1111/jcmm.13052543115528181410 Search in Google Scholar

Yang J.H., Kim K.M., Kim M.G., Seo K.H., Han J.Y., Ka S.O., Park B.H., Shin S.M., Ku S.K., Cho I.J., Ki S.H.: Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic. Biol. Med., 2015; 78: 156–167 YangJ.H. KimK.M. KimM.G. SeoK.H. HanJ.Y. KaS.O. ParkB.H. ShinS.M. KuS.K. ChoI.J. KiS.H. Role of sestrin2 in the regulation of proinflammatory signaling in macrophages Free Radic. Biol. Med. 2015 78 156 167 10.1016/j.freeradbiomed.2014.11.00225463278 Search in Google Scholar

Yu R., Chen C., Mo Y.Y., Hebbar V., Owuor E.D., Tan T.H., Kong A.N.: Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem., 2000; 275: 39907–39913 YuR. ChenC. MoY.Y. HebbarV. OwuorE.D. TanT.H. KongA.N. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism J. Biol. Chem. 2000 275 39907 39913 10.1074/jbc.M00403720010986282 Search in Google Scholar

Yu Y., Yoon S.O., Poulogiannis G., Yang Q., Ma X.M., Villén J., Kubica N., Hoffman G.R., Cantley L.C., Gygi S.P., Blenis J.: Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science, 2011; 332: 1322–1326 YuY. YoonS.O. PoulogiannisG. YangQ. MaX.M. VillénJ. KubicaN. HoffmanG.R. CantleyL.C. GygiS.P. BlenisJ. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling Science 2011 332 1322 1326 10.1126/science.1199484319550921659605 Search in Google Scholar

Zhang J.: Teaching the basics of autophagy and mitophagy to redox biologists –mechanisms and experimental approaches. Redox Biol., 2015; 4: 242–259 ZhangJ. Teaching the basics of autophagy and mitophagy to redox biologists –mechanisms and experimental approaches Redox Biol. 2015 4 242 259 10.1016/j.redox.2015.01.003480379925618581 Search in Google Scholar

Zhang Z., Qian Q., Li M., Shao F., Ding W.X., Lira V.A., Chen S.X., Sebag S.C., Hotamisligil G.S., Cao H., Yang L.: The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy, 2020; DOI: 10.1080/15548627.2020.1788889 ZhangZ. QianQ. LiM. ShaoF. DingW.X. LiraV.A. ChenS.X. SebagS.C. HotamisligilG.S. CaoH. YangL. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB Autophagy 2020 10.1080/15548627.2020.1788889 838659332597296 Open DOISearch in Google Scholar

Zhou D., Zhan C., Zhong Q., Li S.: Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity. J. Mol. Neurosci., 2013; 51: 967–975 ZhouD. ZhanC. ZhongQ. LiS. Upregulation of sestrin-2 expression via P53 protects against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity J. Mol. Neurosci. 2013 51 967 975 10.1007/s12031-013-0081-x23959424 Search in Google Scholar

Zighelboim I., Goodfellow P.J., Schmidt A.P., Walls K.C., Mallon M.A., Mutch D.G., Yan P.S., Huang T.H., Powell M.A.: Differential methylation hybridization array of endometrial cancers reveals two novel cancer-specific methylation markers. Clin. Cancer Res., 2007; 13: 2882–2889 ZighelboimI. GoodfellowP.J. SchmidtA.P. WallsK.C. MallonM.A. MutchD.G. YanP.S. HuangT.H. PowellM.A. Differential methylation hybridization array of endometrial cancers reveals two novel cancer-specific methylation markers Clin. Cancer Res. 2007 13 2882 2889 10.1158/1078-0432.CCR-06-236717504987 Search in Google Scholar

eISSN:
1732-2693
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Mikrobiologie und Virologie, Medizin, Vorklinische Medizin, Grundlagenmedizin, Immunologie