Uneingeschränkter Zugang

Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt


Zitieren

Anoar K.A., F.A. Ali and S.A. Omar. 2014. Detection of metallo-beta-lactamase enzyme in some Gram-negative bacterial isolated from burn patients in Sulaimani City, Iraq. Euro. Sci. J. 10(3): 1857–1881.Search in Google Scholar

Aoki N., Y. Ishii, T. Saga, K. Tateda, S.Y. Kimura, T. Kikuchi, Y. Kobayashi, H.Tanabe, F. Tsukada, Gejyo and others. 2010. Efficacy of calcium-EDTA as an inhibitor for metallo-β-lactamase in a mouse model of Pseudomonas aeruginosa pneumonia. Antimicrob. Agents Chemother. 54(11): 4582–4588.10.1128/AAC.00511-10297615320713659 Search in Google Scholar

Bashir D., M.A. Thokar, B.A. Fomda, G. Bashir, D. Zahoor, S. Ahmed and A.S. Toboli. 2011. Detection of metallo-beta-lacta- mase (MBL) producing Pseudomonas aeruginosa at a tertiary care hospital in Kashmir. Afric. J. Microb. Res. 5(2): 164–172. Search in Google Scholar

Bhongle N.N., N.V. Nagdeo and V.R. Thombare. 2012. The prevalence of metallo-β-lactamases in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital: an alarming threat. J. Clin. Diag. Res. 6: 1200–1202. Search in Google Scholar

Bush K. and G.A. Jacopy. 2010. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54(3): 969–976.10.1128/AAC.01009-09282599319995920 Search in Google Scholar

Camagaro C.H., A. Nascimento-Brudr, A.L. Mondelli, A.C. Montelli and T. Sadatsune. 2011. Detection of IMP and IMP metallo-β-lactamases in clinical specimens of Pseudomonas aeruginosa from a Brazilian public tertiary hospital. Braz. J. Infect. Dis. 15(5): 478–481. Search in Google Scholar

Cantas L., S.Q. Shah, L.M. Cavaco, C. Manaia, F. Walsh, M. Popowska, H. Garelick, H. Bürgmann and H. Sørum. 2013. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front. Microbiol. 4: 1–14.10.3389/fmicb.2013.00096365312523675371 Search in Google Scholar

Cuzon G., T. Naas, P. Bogaerts, Y. Glupczynski and P. Nord- mann. 2012. Evaluation of a DNA microarray for the rapid detection of extended-spectrum β-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J. Antimicrob. Chemother. 67: 1865–1869.10.1093/jac/dks15622604450 Search in Google Scholar

Diab M., N. Fam, M. El-Said, E. El-Dabaa, I. El-Defrawy and M. Saber. 2013. Occurrence of VIM-2 metallo-β-lactamases in imi- penem resistant and susceptible Pseudomonas aeruginosa clinical isolates from Egypt. Afr. J. Microbiol. Res. 7(35): 4465–4472. Search in Google Scholar

Divyashanthi C.M., S. Adithiyakumar and N. Bharathi. 2015. Study of prevalence and antimicrobial susceptibility pattern of bacterial isolates in a tertiary care hospital. Int. J. Pharm. Sci. 7(1): 185–190. Search in Google Scholar

Docquier J.D., M.L. Riccio, C. Mugnaioli, F. Luzzaro, A. Endi- miani, A. Toniolo, G. Amicosante and G.M. Rossolini. 2003. IMP- 12, a new plasmid-encoded metallo-β-lactamase from a Pseudomonas putida clinical isolate. Antimicrob. Agents Chemother. 47: 1522–1528. Search in Google Scholar

Doosti M., A. Ramazani and M. Garshasb. 2013. Identification and characterization of metallo-β-lactamases producing Pseudomonas aeruginosa clinical isolates in university hospital from Zanjan Province, Iran. Iran Biomed. J. 17(3): 129–133. Search in Google Scholar

Gaspareto P.B., A.F. Martins, A.P. Zavascki and A.L. Barth. 2007 Occurrence of blaIMP-1 genes of metallo-β-lactamase in clinical isolates of Pseudomnas aeruginosa from three university hospitals in the city of Porto Alegre, Brazil. Braz. J. Microbiol. 38: 108–109. Search in Google Scholar

Gonçalves I., R.C. Dantas, M.L. Ferreira, D.W.D.F. Batistão, P.P. Gontijo-Filho and R.M. Ribas. 2017. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz. J. Microbiol. 48(2): 211–217.10.1016/j.bjm.2016.11.004547043128034598 Search in Google Scholar

Hanson N.D., A. Hossain, L. Buck, E.S. Moland and S.K. Thomson. 2006. First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob. Agents Chemother. 50: 2272–2273.10.1128/AAC.01440-05147910716723605 Search in Google Scholar

Hashemi A., F. Fallah, S. Erfanimanesh, A.S. Chirani and M. Dadashi. 2016. Detection of antibiotic resistance genes among Pseudomonas aeruginosa strains isolated from burn patients in Iran. British. Microbiol. Res. J. 12(4): 1–6. Search in Google Scholar

Khan S., P. Singh, R. Rashmi, A. Asthana and K. Khanal. 2014. Recent trend of acquisition of multi-drug resistance in Pseudomonas aeruginosa. Asian Pacific J. Microbiol. Res. 2(1): 1–5. Search in Google Scholar

Khosravi Y., K.M. Vellasamy, S.T. Tay and J. Vadivelu. 2011. Molecular detection and characterization of metallo-beta-lactamase (MBL) genes and integrons of imipenem-resistant P. aeruginosa in Malaysia. J. Med. Microbiol. 60 (Pt 7): 988–994.10.1099/jmm.0.029868-021436370 Search in Google Scholar

Kirkpatrick L.A. and B.C. Feeney. 2013. A simple guide to IBM SPSS statistics, p. 128. Version 20.0. for student ed. Wadsworth, Cengage Learning, Belmont, California. Search in Google Scholar

Kumar V., M.R. Sen, S. Anupurba, P. Prakash and R. Gupta. 2011. An observational study of metallo-beta-lactamase production in clinical isolates of Pseudomonas aeruginosa: an experience at tertiary care hospital in north India. Indian J. Prev. Soc. Med. 42: 173–176.Search in Google Scholar

Lucena A., L.M. Dalla Costa, K.S. Nogueira, A.P. Matos, A.C. Gales, M.C. Paganini, M.E. Castro and S.M. Raboni. 2014. Nosocomial infections with metallo-beta-lactamase producing P. aeruginosa: molecular epidemiology, risk factors/clinical features and outcomes. J. Hosp. Infec. 87: 234–240. Search in Google Scholar

Matos E.C.O.D, H.J.D. Matos, M.L. Conceição, Y.C. Rodrigues, I.C.D.S Caneiro and K.V.B. Lima. 2016. Clinical and microbiological features of infections caused by Pseudomonas aeruginosa in patients hospitalized in intensive care units. Rev. Soc. Bras. Med. Trop. 49(3): 305–311. Search in Google Scholar

Miyakis S., G.M. Eliopoulos, A. Pefanis and A. Tsakris. 2011. The challenges of antimicrobial drug resistance in Greece. Clin. Infect. Dis. 53(2): 177–184. Search in Google Scholar

Mohamed A.A., A.M. Shibl, S.A. Zaki and A.F. Tawfik. 2011. Antimicrobial resistance pattern and prevalence of metallo-β-lactamases in Pseudomonas aeruginosa from Saudi Arabia. Afr. J. Microbiol. Res. 5(30): 5528–5533. Search in Google Scholar

Mohamed M.N. and D. Raafat. 2011. Phenotypic and genotypic detection of metallo-beta-lactamase resistant Acinetobacter bau- manii isolated from a tertiary hospital in Alexanrdia, Egypt. Res. J. Microbiol. 6: 750–760. Search in Google Scholar

Mohanasoundaram K.M. 2011. The antimicrobial resistance pattern in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital; 2008–2010 (A 3 Year Study). J. Clin. Diag. Res. 5(3): 491–494. Search in Google Scholar

Mohd N.M., M.H. Nurnajwa, J. Lay, J.C. Teoh, A.N. Syafinaz and M.T. Niazlin. 2015. Risk factors for multidrug-resistant Pseudomonas aeruginosa among hospitalized patients at a Malaysian hospital. Sains Malaysiana 44(2): 257–260.10.17576/jsm-2015-4402-13 Search in Google Scholar

Morales E., F. Cots, M. Sala, M. Comas, F. Belvis, M. Riu, M. Salvado, S. Grau, J.P. Horcajada, M.M. Montero and others. 2012. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Serv. Res. 12: 122.10.1186/1472-6963-12-122341269322621745 Search in Google Scholar

Nouer S.A., M. Nucci, M.P. de-Oliveira, F.L. Pellegrino and B.M. Moreira. 2005. Risk factors for acquisition of multidrug-resistant Pseudomonas aeruginosa producing IMPmetallo-beta-lactamase. Antimicrob. Agents Chemother. 49(9): 3663–3667.10.1128/AAC.49.9.3663-3667.2005119541116127037 Search in Google Scholar

Ntokou I.A., A.N. Maniatis, A. Tsakris and S. Pournaras. 2008. Hidden VIM-1 metallo-β-lactamase phenotypes among acineto- bacter baumannii clinical isolates. J. Clin. Microbiol. 46(1): 346–349.Search in Google Scholar

Patel J.B., F.R. Cockerill, J. Alder, P.A. Bradford, G.M. Eliopoulos, D.J. Hardy, J.A. Hindler, S.G. Jenkins, J.S. Lewis, L.A. Miller and others. 2014. Performance standards for antimicrobial susceptibility testing; twenty fourth informational supplement. M100-S24. CLSI 34(1): 1–219. Search in Google Scholar

Peleg A.Y., C. Franklin, J. Bell and D.W. Spelman. 2004. Emergence of IMP-4 metallo-β-lactamase in a clinical isolate from Australia. J. Antimicrob. Chemother. 54: 699–700.10.1093/jac/dkh39815282242 Search in Google Scholar

Picão R.C., F.E. Carrara-Marroni, A.C. Gales, E.J. Venâncio, D.E. Xavier, M.C. Tognim and J.S. Pelayo. 2012. Metallo-β- lactamase production in Meropenem susceptible Pseudomonas aeruginosa isolates: risk for silent spread. Mem. Inst. Oswaldo Cruz 107(6): 747–751.10.1590/S0074-02762012000600007 Search in Google Scholar

Picão R.C., S.S. Andrade, A.G. Nicoletti, E.H. Campana, G.C. Moraes, R.E. Mendes and A.C. Gales. 2008. Metallo-β- lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM- IMP-, or VIM- producing isolates. J. Clin. Microbiol. 46: 2028–2037. Search in Google Scholar

Pitout J.D., D.B. Gregson, L. Poirel, J. McClure, P. Le and D.L. Church. 2005. Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. J. Clin. Microbiol. 43(7): 3129–3135. Ranjan S., G.S. Banashankari and P.R.S. Babu. 2015. Evaluation of phenotypic tests and screening markers for detection of metallo-β- lactamases in clinical isolates of Pseudomonas aeruginosa: a prospective study. Med. JDY Patil Univ. 8: 599–605. Sader H.S., A.O. Reis, S. Silbert and A.C. Gales. 2005. IMPs, VIMs and IMPs: the diversity of metallo-β-lactamases produced by car- bapenem-resistant P. aeruginosa in a Brazilian hospital. Clin. Microbiol. Infect. 11(1): 73–76. Search in Google Scholar

Salabi A.E., M.A. Toleman, J. Weeks, T. Bruderer, R. Frei and TR Walsh. 2010. First report of metallo-beta-lactamase IMP-1 in Europe. Antimicrob. Agents Chemother. 54(1): 582.10.1128/AAC.00719-09279854819858251 Search in Google Scholar

Sedighi M., S. Safiri, S. Pirouzi, H. Jayasinghe, M. Sepidarkish and H. Fouladseresht. 2015. Detection and determination of the antibiotic resistance patterns in Pseudomonas aeruginosa strains isolated from clinical specimens in hospitals of Isfahan, Iran, 2012. Scimetr 3(1): e21133. Search in Google Scholar

Sivaraj S., P. Murugesan, S. Muthurelu, S. Purusothaman and A. Silambarasan. 2012. Comparative study of Pseudomonas aeruginosa isolate recovered from clinical and environmental samples against antibiotics. Inter. J. Pharm. Sci. 4(3): 103–107. Search in Google Scholar

Souli, M., I. Galani and H. Giamarellou. 2008. Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill 13(47): 1–11.10.2807/ese.13.47.19045-en Search in Google Scholar

Strateva T. and D. Yordanov. 2009. Pseudomonas aeruginosa is a phenomenon of bacterial resistance. J. Med. Microbiol. 58(9): 1133–1148. Search in Google Scholar

Tille P., B.A. Forbes, D. Sahm and A. Weissfeld. 2014. Overview of bacterial identification methods and strategies, pp. 193–232. Bailey and Scott’s diagnostic microbiology, 13th ed. Elsevier, St. Louis, Missouri. Search in Google Scholar

Vaishali G., B. Renu and D. Vaishali. 2013. Study the prevalence and risk factors of MBL producing P. aeruginosa from tertiary care centre. Int. J. Sci. Res. 4: 438. Search in Google Scholar

Varaiya A., M. Kulkarni, P. Bhalekar and J. Dogra. 2008. Incidence of metllo-beta-lactamase-producing Pseudomonas aeruginosa in diabetes and cancer patients. Indian J. Pathol. Microbiol. 51(2): 200–203.Search in Google Scholar

Walsh T.R. 2008. Clinically significant carbapenamases: an update. Curr. Opin. Infect. Dis. 21: 367–731.10.1097/QCO.0b013e328303670b18594288 Search in Google Scholar

World Health of Organization (WHO). 2015. Antibacterial resistance, p. 256. Fact sheet N°194. WHO, Geneva. Search in Google Scholar

Xavier D.E., R.C. Picão, R. Girardello, L.C. Fehlberg, A.C. Gales. 2010. Efflux pumps expression and its association with porin downregulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 10: 217.10.1186/1471-2180-10-217292753320704733 Search in Google Scholar

Zafer M.M., H.A. El-Mahallawy, M.A. Amin, M.S. Ashour and M.H. El-Agam. 2014. Characterization of metallo-β-lactamase producing Pseudomonas aeruginosa in Egypt. Egy. J. Med. Microbiol. 23(1): 69. Search in Google Scholar

Zafer M.M., M.H. Al-Agamy, H.A. El-Mahallawy, M.A. Amin and M.S. Ashour. 2014. Antimicrobial resistance pattern and their betalactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Biomed. Res. Int. 2014: 101635.10.1155/2014/101635395350324707471 Search in Google Scholar

Zavascki A.P., A.L. Barth, A.L. Goncalves, A.L. Moro, J.F. Fernandes and A.F. Martins. 2006. The influence of metallo-beta- lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. J. Antimicrob. Chemother. 58: 387–392.10.1093/jac/dkl23916751638 Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie