Uneingeschränkter Zugang

Recombinant Russell’s viper venom-factor X activator (RVV-X)-specific antibody: neutralization and crossreactivity with Cryptelytrops albolabris and Calloselasma rhodostoma venoms


Zitieren

1. Anderson SG, Gutierrez JM, Ownby CL. Comparison of the immunogenicity and antigenic composition of ten Central American snake venoms. Toxicon. 1993; 31:1051-9.10.1016/0041-0101(93)90263-IOpen DOISearch in Google Scholar

2. Harrison RA, Wüster W, Theakston RD. The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody. Toxicon. 2003; 41: 441-9.10.1016/S0041-0101(02)00360-4Open DOISearch in Google Scholar

3. Stabeli RG, Magalhaes LM, Selistre-de-Araujo HS, Oliveira EB. Antibodies to a fragment of the Bothrops moojenil-amino acid oxidase cross-react with snake venom components unrelated to the parent protein. Toxicon. 2005; 46: 308-17.10.1016/j.toxicon.2005.04.020Open DOISearch in Google Scholar

4. Minton SA, Weinstein SA, Wilde CE 3rd. An enzymelinked immunoassay for detection of North American pit viper venoms. J Toxicol Clin Toxicol. 1984; 22:303-16.10.3109/15563658408992562Open DOISearch in Google Scholar

5. Theakston RD. The application of immunoassay techniques, including enzyme-linked immunosorbent assay (ELISA), to snake venom research. Toxicon. 1983; 21:341-52.10.1016/0041-0101(83)90090-9Open DOISearch in Google Scholar

6. Barral-Netto M, Schriefer A, Barral A, Almeida AR, Mangabeira A. Serum levels of bothropic venom in patients without anti-venom intervention. Am J Trop Med Hyg. 1991; 45: 751-4.10.4269/ajtmh.1991.45.751Search in Google Scholar

7. Gutiérrez JM, Sanz L, Flores-Diaz M, Figueroa L, Madrigal M, Herrera M, et al. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches. J Proteome Res. 2010; 9:564-77.10.1021/pr9009518Open DOISearch in Google Scholar

8. Hanashiro MA, Da Silva MH, Bier OG. Neutralization of crotoxin and crude venom by rabbit antiserum to crotalus phospholipase A. Immunochemistry. 1978; 15:745-50.10.1016/0161-5890(78)90103-7Open DOISearch in Google Scholar

9. Kaiser II, Middlebrook JL, Crumrine MH, Stevenson WW. Cross-reactivity and neutralization by rabbit antisera raised against crotoxin, its subunits and two related toxins. Toxicon. 1986; 24: 669-78.10.1016/0041-0101(86)90030-9Open DOISearch in Google Scholar

10. Gowda DC, Jackson CM, Hensley P, Davidson, EA. Factor X-activating glycoprotein of Russell’s viper venom. Polypeptide composition and characterization of the carbohydrate moieties. J Biol Chem. 1994; 269:10644-50.10.1016/S0021-9258(17)34108-XSearch in Google Scholar

11. Fujikawa K, Legaz ME, Davie EW. Bovine factor X 1 (Stuart factor). Mechanism of activation by protein from Russell’s viper venom. Biochemistry. 1972; 11:4892-99.10.1021/bi00776a003Open DOISearch in Google Scholar

12. Di Scipio RG, Hermodson MA, Davie EW. Activation of human factor X (Stuart factor) by a protease from Russell’s viper venom. Biochemistry. 1977; 16:5253-60.10.1021/bi00643a015Open DOISearch in Google Scholar

13. Rungsiwongse J, Ratanabanangkoon K. Development of an ELISA to assess the potency of horse therapeutic anti-venom against Thai cobra venom. J Immunol Methods. 1991; 136: 37-43.10.1016/0022-1759(91)90247-DSearch in Google Scholar

14. LeammLi UK. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227: 680-5.10.1038/227680a0Search in Google Scholar

15. Suntravat M, Nuchprayoon I, Perez JC. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidae, and purified Russell’s viper venom-factor X activator (RVV-X). Toxicon 2010; 56: 544-53.10.1016/j.toxicon.2010.05.012Open DOISearch in Google Scholar

16. Hu YX, Guo JY, Shen L, Chen Y, Zhang ZC, Zhang YL. Get effective polyclonal antisera in one month. Cell Res. 2002; 12: 157-60.10.1038/sj.cr.7290122Open DOISearch in Google Scholar

17. Morita T. Proteases which activate factor X. In: Bailey G ed. Enzymes from Snake Venoms. Fort Collins: Alaken; 1998. p. 179-209.Search in Google Scholar

18. Kroon DJ, Baldwin-Ferro A, Lalan P. Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res. 1992; 9:1386-93.10.1023/A:1015894409623Open DOISearch in Google Scholar

19. Jia LG, Shimokawa K, Bjarnason JB, Fox JW. Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon. 1996; 34: 1269-76.10.1016/S0041-0101(96)00108-0Open DOISearch in Google Scholar

20. Ramos OH, Selistre-de-Araujo HS. Snake venom metalloproteases-structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol. 2006; 142: 328-46.10.1016/j.cbpc.2005.11.00516434235Search in Google Scholar

21. Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008; 275: 3016-30.10.1111/j.1742-4658.2008.06466.x18479462Search in Google Scholar

22. Lu Q, Navdaev A, Clemetson JM, Clemetson KJ. Snake venom C-type lectins interacting with platelet receptors. Structure-function relationships and effects on haemostasis. Toxicon. 2005; 45: 1089-98.10.1016/j.toxicon.2005.02.022Open DOISearch in Google Scholar

23. Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant, procoagulant, and platelet-modulating activities. Toxicon. 2005; 45: 1099-114.10.1016/j.toxicon.2005.02.021Open DOISearch in Google Scholar

24. Hsu CC, Wu WB, Huang TF. A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost. 2008; 6: 1578-85.10.1111/j.1538-7836.2008.03071.xSearch in Google Scholar

25. Andrews RK, Gardiner EE, Asazuma N, Berlanga O, Tulasne D, Nieswandt B, et al. A novel viper venom metalloproteinase, alborhagin, is an agonist at the platelet collagen receptor GPVI. J Biol Chem. 2001; 276:28092-7.10.1074/jbc.M011352200Search in Google Scholar

26. Wijeyewickrema LC, Gardiner EE, Moroi M, Berndt MC, Andrews RK. Snake venom metalloproteinases, crotarhagin and alborhagin, induce ectodomain shedding of the platelet collagen receptor, glycoprotein VI. Thromb Haemost. 2007; 98: 1285-90.10.1160/TH07-06-0402Search in Google Scholar

27. Dambisya YM, Lee TL, Gopalakrishnakone P. Action of Calloselasma rhodostoma (Malayan pit viper) venom on human blood coagulation and fibrinolysis using computerized thromboelastography (CTEG). Toxicon. 1994; 32: 1619-26.10.1016/0041-0101(94)90320-4Open DOISearch in Google Scholar

28. Yamada D, Sekiya F, Morita T. Prothrombin and factor X activator activities in the venoms of Viperidae snakes. Toxicon. 1997; 35: 1581-9.10.1016/S0041-0101(97)00043-3Open DOISearch in Google Scholar

29. Hofmann H, Bon C. Blood coagulation induced by the venom of Bothrops atrox. 2. Identification, purification, and properties of two factor X activators. Biochemistry. 1987; 26: 780-7.10.1021/bi00377a019Open DOISearch in Google Scholar

30. Nahas L, Kamiguti AS, Barros MA. Thrombin-like and factor X-activator components of Bothrops snake venoms. Thromb Haemost. 1979;41: 314-28.10.1055/s-0038-1646781Search in Google Scholar

31. Komori Y, Nikai T, Sugihara H. Isolation and characterization of factor X activator from the venom of Vipera aspis aspis. Int J Biochem. 1990; 22: 1053-60.10.1016/0020-711X(90)90013-SOpen DOISearch in Google Scholar

32. Samel M, Siigur J. Medium molecular weight factor X activating enzyme from Vipera berus berus venom. Toxicon. 1995; 33: 41-52.10.1016/0041-0101(94)00143-VOpen DOISearch in Google Scholar

33. Franssen JH, Janssen-Claessen T, Van Dieijen G. Purification and properties of an activating enzyme of blood clotting factor X from the venom of Cerastes cerastes. Biochim Biophys Acta. 1983; 747: 186-90.10.1016/0167-4838(83)90139-5Search in Google Scholar

34. Farid T, Nasser H, Zaki K, el-Asmar MF. Low molecular weight factor X activator from Cerastes vipera (Sahara sand viper) venom. Toxicon. 1993; 31:1007-17.10.1016/0041-0101(93)90260-POpen DOISearch in Google Scholar

35. Chung CH, Peng HC, Huang TF. Aggretin, a C-type lectin protein, induces platelet aggregation via integrin alpha(2)beta(1) and GPIb in a phosphatidylinositol 3-kinase independent pathway. Biochem Biophys Res Commun. 2001; 285: 689-95.10.1006/bbrc.2001.522811453648Search in Google Scholar

36. Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Glauner M, Magnenat E, et al. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (malayan pit viper), stimulates platelets by binding to alpha 2beta 1 integrin and glycoprotein Ib, activating Syk and phospholipase Cgamma 2, but does not involve the glycoprotein VI/Fc receptor gamma chain collagen receptor. J Biol Chem. 2001; 276: 20882-9.10.1074/jbc.M10158520011287424Search in Google Scholar

37. Peng M, Lu W, Kirby EP. Alboaggregin-B: a new platelet agonist that binds to platelet membrane glycoprotein Ib. Biochemistry. 1991; 30: 11529-36.10.1021/bi00113a0071747371Open DOISearch in Google Scholar

38. Yoshida E, Fujimura Y, Miura S, Sugimoto M, Fukui H, Narita N, et al. Alboaggregin-B and botrocetin, two snake venom proteins with highly homologous amino acid sequences but totally distinct functions on von Willebrand factor binding to platelets. Biochem Biophys Res Commun. 1993; 191: 1386-92.10.1006/bbrc.1993.13718466514Search in Google Scholar

39. Usami Y, Suzuki M, Yoshida E, Sakurai Y, Hirano K, Kawasaki T, et al. Primary structure of alboaggregin-B purified from the venom of Trimeresurus albolabris. Biochem Biophys Res Commun. 1996; 219: 727-33. 10.1006/bbrc.1996.03028645249Search in Google Scholar

eISSN:
1875-855X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Gesundheitsfachberufe, Vorklinische Medizin, Grundlagenmedizin, andere, Klinische Medizin