Zitieren

Li JM, Yao ZF, Zou YZ, Ge JB, Guan AL, Wu J, et al. The therapeutic potential of G-CSF in pressure overload induced ventricular reconstruction and heart failure in mice. Mol Biol Rep. 2012;39(1):5-12. https://doi.org/10.1007/s11033-011-0703-8 PMid:21431359 Search in Google Scholar

Phyo SA, Uchida K, Chen CY, Caporizzo MA, Bedi K, Griffin J, et al. Transcriptional, post-transcriptional, and post-translational mechanisms rewrite the tubulin code during cardiac hypertrophy and failure. Front Cell Dev Biol. 2022;10:837486. https://doi.org/10.3389/fcell.2022.837486 PMid:35433678 Search in Google Scholar

Caporizzo MA, Chen CY, Bedi K, Margulies KB, Prosser BL. Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation. 2020;141(11):902-15. https://doi.org/10.1161/circulationaha.119.043930 PMid:31941365 Search in Google Scholar

Borin D, Peña B, Chen SN, Long CS, Taylor MR, Mestroni L, et al. Altered microtubule structure, hemichannel localization and beating activity in cardiomyocytes expressing pathologic nuclear lamin A/C. Heliyon. 2020;6(1):e03175. https://doi.org/10.1016/j.heliyon.2020.e03175 PMid:32021920 Search in Google Scholar

Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat Rev Cardiol. 2022;19(6):364-78. https://doi.org/10.1038/s41569-022-00692-y PMid: 35440741 Search in Google Scholar

Goldblum RR, McClellan M, White K, Gonzalez SJ, Thompson BR, Vang HX, et al. Oxidative stress pathogenically remodels the cardiac myocyte cytoskeleton via structural alterations to the microtubule lattice. Dev Cell. 2021;56(15):2252-66.e6. https://doi.org/10.1016/j.devcel.2021.07.004 PMid:34343476 Search in Google Scholar

Chen CY, Caporizzo MA, Bedi K, Vite A, Bogush AI, Robison P, et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat Med. 2018;24(8):1225-33. https://doi.org/10.1038/s41591-018-0046-2 PMid:29892068 Search in Google Scholar

Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood). 2019;244(15):1255-72. https://doi.org/10.1177/1535370219868960 PMid:31398994 Search in Google Scholar

Gudimchuk NB, McIntosh JR. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. 2021;22(12):777-95. https://doi.org/10.1038/s41580-021-00399-x PMid:34408299 Search in Google Scholar

Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev Cell. 2020;54(1):7-20. https://doi.org/10.1016/j.devcel.2020.06.008 PMid:32634400 Search in Google Scholar

Zwetsloot AJ, Tut G, Straube A. Measuring microtubule dynamics. Essays Biochem. 2018;62(6):725-35. https://doi.org/10.1042/EBC20180035 PMid:30287587 Search in Google Scholar

Sirajuddin M, Rice LM, Vale RD. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol. 2014;16(4):335-44. https://doi.org/10.1038/ncb2920 PMid:24633327 Search in Google Scholar

Scriven DR, Asghari P, Moore ED. Microarchitecture of the dyad. Cardiovasc Res. 2013;98(2):169-76. https://doi.org/10.1093/CVR/CVT025 PMid:23400762 Search in Google Scholar

Vega AL, Yuan C, Votaw VS, Santana LF. Dynamic changes in sarcoplasmic reticulum structure in ventricular myocytes. J Biomed Biotechnol. 2011;2011:382586. https://doi.org/10.1155/2011/382586 PMid:22131804 Search in Google Scholar

Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, et al. Interaction of the joining region in junctophilin-2 with the L-type Ca2+ channel is pivotal for cardiac dyad assembly and intracellular Ca2+ dynamics. Circ Res. 2021;128(1):92-114. https://doi.org/10.1161/CIRCRESAHA.119.315715 PMid:33092464 Search in Google Scholar

Paschal BM, Shpetner HS, Vallee RB. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987;105(3):1273-82. https://doi.org/10.1083/JCB.105.3.1273 PMid:2958482 Search in Google Scholar

Hu C, Tian Y, Xu H, Pan B, Terpstra EM, Wu P, et al. Inadequate ubiquitination-proteasome coupling contributes to myocardial ischemia-reperfusion injury. J Clin Invest. 2018;128(12):5294-306. https://doi.org/10.1172/JCI98287 PMid:30204128 Search in Google Scholar

Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell. 2007;128(3):547-60. https://doi.org/10.1016/J.CELL.2006.12.037 PMid:17289573 Search in Google Scholar

Macquart C, Jüttner R, Rodriguez BM, Le Dour C, Lefebvre F, Chatzifrangkeskou M, et al. Microtubule cytoskeleton regulates connexin 43 localization and cardiac conduction in cardiomyopathy caused by mutation in A-type lamins gene. Hum Mol Genet. 2019;28(24):4043-52. https://doi.org/10.1093/HMG/DDY227 PMid:29893868 Search in Google Scholar

Smyth JW, Hong TT, Gao D, Vogan JM, Jensen BC, Fong TS, et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest. 2010;120(1):266-79. https://doi.org/10.1172/JCI39740 PMid:20038810 Search in Google Scholar

Denes LT, Kelley CP, Wang ET. Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun. 2021;12(1):6079. https://doi.org/10.1038/S41467-021-26383-9 PMid:34707124 Search in Google Scholar

Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, Margulies KB, et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science. 2016;352(6284):aaf0659. https://doi.org/10.1126/science.aaf0659 PMid:27102488 Search in Google Scholar

Caporizzo MA, Chen CY, Salomon AK, Margulies KB, Prosser BL. Microtubules provide a viscoelastic resistance to myocyte motion. Biophys J. 2018;115(9):1796-807. https://doi.org/10.1016/J.BPJ.2018.09.019 PMid:30322798 Search in Google Scholar

Barmeyer A, Müllerleile K, Mortensen K, Meinertz T. Diastolic dysfunction in exercise and its role for exercise capacity. Heart Fail Rev. 2009;14(2):125-34. https://doi.org/10.1007/S10741-008-9105-Y PMid:18758943 Search in Google Scholar

Lin Z, Gasic I, Chandrasekaran V, Peters N, Shao S, Mitchison TJ, et al. TTC5 mediates autoregulation of tubulin via mRNA degradation. Science. 2020;367(6473):100-4. https://doi.org/10.1126/science.aaz4352 PMid:31727855 Search in Google Scholar

Li L, Zhang Q, Zhang X, Zhang J, Wang X, Ren J, et al. Microtubule associated protein 4 phosphorylation leads to pathological cardiac remodeling in mice. EBioMedicine. 2018;37:221-35. https://doi.org/10.1016/j.ebiom.2018.10.017 PMid:30327268 Search in Google Scholar

Yu X, Chen X, Amrute-Nayak M, Allgeyer E, Zhao A, Chenoweth H, et al. MARK4 controls ischaemic heart failure through microtubule detyrosination. Nature. 2021;594(7864):560-5. https://doi.org/10.1038/s41586-021-03573-5 PMid:34040253 Search in Google Scholar

Imazio M, Nidorf M. Colchicine and the heart. Eur Heart J. 2021:42(28):2745-60. https://doi.org/10.1093/eurheartj/ehab221 PMid:33961006 Search in Google Scholar

Fernández-Ruiz I. Targeting the cytoskeleton in heart failure. Nat Rev Cardiol. 2018;15:503. https://doi.org/10.1038/s41569-018-0056-2 Search in Google Scholar

Leung YY, Hui LL, Kraus VB. Colchicine-update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 2015;45(3):341-50. https://doi.org/10.1016/j.semarthrit.2015.06.013 PMid:26228647 Search in Google Scholar

Chaldakov GN. Colchicine, a microtubule-disassembling drug, in the therapy of cardiovascular diseases. Cell Biol Int. 2018;42(8):1079-84. https://doi.org/10.1002/cbin.10988 PMid:29762881 Search in Google Scholar

Fujisue K, Sugamura K, Kurokawa H, Matsubara J, Ishii M, Izumiya Y, et al. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction. Circ J. 2017;81(8):1174-82. https://doi.org/10.1253/circj.CJ-16-0949 PMid:28420825 Search in Google Scholar

Robison P, Prosser BL. Microtubule mechanics in the working myocyte. J Physiol. 2017;595(12):3931-7. https://doi.org/10.1113/JP273046 PMid:28116814 Search in Google Scholar

Chen CY, Salomon AK, Caporizzo MA, Curry S, Kelly NA, Bedi K, et al. Depletion of vasohibin 1 speeds contraction and relaxation in failing human cardiomyocytes. Circ Res. 2020;127(2):e14-27. https://doi.org/10.1161/CIRCRESAHA.119.315947 PMid:32272864 Search in Google Scholar

Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, et al. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun. 2015;6:8526. https://doi.org/10.1038/ncomms9526 PMid:26446751 Search in Google Scholar

Curry EA 3rd, Murry DJ, Yoder C, Fife K, Armstrong V, Nakshatri H, et al. Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004;22(3):299-305. https://doi.org/10.1023/B: DRUG.0000026256.38560.be PMid:15122077 Search in Google Scholar

Kurdi M, Bowers MC, Dado J, Booz GW. Parthenolide induces a distinct pattern of oxidative stress in cardiac myocytes. Free Radic Biol Med. 2007;42(4):474-81. https://doi.org/10.1016/j.freeradbiomed.2006.11.012 PMid:17275679 Search in Google Scholar

eISSN:
1857-9361
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Allgemeinmedizin, Innere Medizin, Kardiologie, Chirurgie, Gefäßchirurgie