Uneingeschränkter Zugang

Bioactive glasses enriched with zinc and strontium: synthesis, characterization, cytocompatibility with osteoblasts and antibacterial properties

, , , , , , ,  und   
07. Feb. 2024

Zitieren
COVER HERUNTERLADEN

Baheiraei N., Eyni H., Bakhshi B., Najafloo R., Rabiee N., Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration, Sci. Rep., 2021, 11, 1–9, DOI: 10.1038/s41598-021-88058-1. Search in Google Scholar

Balasubramanian P., Strobel L.A., Kneser U., Boccaccini A.R., Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications, Biomed. Glas., 2015, 1, 51–69, DOI: 10.1515/bglass-2015-0006. Search in Google Scholar

Beyersmann D., Homeostasis and Cellular Functions of Zinc, Materwiss. Werksttech., 2002, 33, 764–769, DOI: 10.1002/mawe.200290008. Search in Google Scholar

Cacciotti I., Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties, J. Mater. Sci., 2017, 52, 8812–8831, DOI: 10.1007/s10853-017-1010-0. Search in Google Scholar

Ciołek L., Biernat M., Jaegermann Z., Zaczyńska E., Czarny A., Jastrzębska A., The studies of cytotoxicity and antibacterial activity of composites with ZnO-doped bioglass, Int. J. Appl. Ceram. Technol., 2019, 16, 541–551, DOI: 10.1111/ijac.13144. Search in Google Scholar

Deshmukh K., Kovářík T., Křenek T., Docheva D., Stich T., Pola J., Recent advances and future perspectives of sol-gel derived porous bioactive glasses: a review, RSC Adv., 2020, 10, 33782–33835, DOI: 10.1039/d0ra04287k. Search in Google Scholar

El-Kady A.M., Kamel N.A., Elnashar M.M., Farag M.M., Production of bioactive glass/chitosan scaffolds by freezegelation for optimized vancomycin delivery: Effectiveness of glass presence on controlling the drug release kinetics, J. Drug. Deliv. Sci. Technol., 2021, 66, 102779, DOI: 10.1016/j.jddst.2021.102779. Search in Google Scholar

Fredholm Y.C., Karpukhina N., Brauer D.S., Jones J.R., Law R.V., Hill R.G., Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation, J. R. Soc. Interface, 2012, 9, 880–889, DOI: 10.1098/rsif.2011.0387. Search in Google Scholar

Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N., O’Donnell M.D., Hill R.G. et al., The effects of strontiumsubstituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, 2010, 31, 3949–3956, DOI: 10.1016/j.biomaterials.2010.01.121. Search in Google Scholar

Gerhardt L.C., Boccaccini A.R., Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials (Basel), 2010, 3, 3867–3910, DOI: 10.3390/ma3073867. Search in Google Scholar

Gorustovich A.A., Steimetz T., Cabrini R.L., Porto López J.M., Osteoconductivity of strontium-doped bioactive glass particles: A histomorphometric study in rats, J. Biomed. Mater. Res. – Part A, 2010, 92, 232–237, DOI: 10.1002/jbm.a.32355. Search in Google Scholar

Hajduga M.B., Bobiński R., Dutka M., Ulman-Włodarz I., Bujok J., Pająk C. et al., Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc doped bioglass, Acta Bioeng. Biomech., 2021, 23, https://doi.org/10.37190/ABB-01766-2020-03 Search in Google Scholar

Hench L.L., Wheeler D.L., Greenspan D.C., Molecular Control of Bioactivity in Sol-Gel Glasses, J. Sol-Gel Sci. Technol., 1998, 13, 245–250, DOI: 10.1023/a:1008643303888. Search in Google Scholar

Hesaraki S., Gholami M., Vazehrad S., Shahrabi S., The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO-SrO-SiO2-P2O5 quaternary system, Mater. Sci. Eng. C, 2010, 30, 383–390, DOI: 10.1016/j.msec.2009.12.001. Search in Google Scholar

Hu S., Chang J., Liu M., Ning C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med., 2009, 20, 281–286, DOI: 10.1007/s10856-008-3564-5. Search in Google Scholar

Isaac J., Nohra J., Lao J., Jallot E., Nedelec J.M., Berdal A., Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells, Eur. Cells Mater., 2011, 21, 130–143, DOI: 10.22203/eCM.v021a11. Search in Google Scholar

Ito A., Kawamura H., Otsuka M., Ikeuchi M., Ohgushi H., Ishikawa K. et al., Zinc-releasing calcium phosphate for stimulating bone formation, Mater. Sci. Eng. C, 2002, 22, 21–25, DOI: 10.1016/S0928-4931(02)00108-X. Search in Google Scholar

Kargozar S., Lotfibakhshaiesh N., Ai J., Mozafari M., Brouki M.P., Hamzehlou S. et al., Strontium- and cobaltsubstituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities, Acta Biomater., 2017, 58,502–514, DOI: 10.1016/j.actbio.2017.06.021. Search in Google Scholar

Kargozar S., Montazerian M., Hamzehlou S., Kim H.W., Baino F., Mesoporous bioactive glasses: Promising platforms for antibacterial strategies, Acta Biomater., 2018, 81, 1–19, DOI: 10.1016/j.actbio.2018.09.052. Search in Google Scholar

Liu X., Ding C., Chu P.K., Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials, 2004, 25, 1755–1761, DOI: 10.1016/j.biomaterials.2003.08.024. Search in Google Scholar

Lukito D., Xue J.M., Wang J., In vitro bioactivity assessment of 70 (wt.)%SiO230 (wt.)%CaO bioactive glasses in simulated body fluid, Mater. Lett., 2005, 59, 3267–3271, DOI: 10.1016/j.matlet.2005.05.055. Search in Google Scholar

Łączka M., Cholewa-Kowalska K., Osyczka A.M., Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants, Ceram. Int., 2016, 42, 14313–14325, DOI: 10.1016/j.ceramint.2016.06.077. Search in Google Scholar

Mao L., Xia L., Chang J., Liu J., Jiang L., Wu C. et al., The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, Acta Biomater., 2017, 61, 217–232, DOI: 10.1016/j.actbio.2017.08.015. Search in Google Scholar

Moghanian A., Firoozi S., Tahriri M., Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int., 2017, 43, 14880–14890, DOI: 10.1016/j.ceramint.2017.08.004. Search in Google Scholar

Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R., Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review, Front. Microbiol., 2019, 10, DOI: 10.3389/fmicb.2019.00539. Search in Google Scholar

Murphy S., Wren A.W., Towler M.R., Boyd D., The effect of ionic dissolution products of CaSrNaZnSi bioactive glass on in vitro cytocompatibility, J. Mater. Sci. Mater. Med., 2010, 21, 2827–2834, DOI: 10.1007/s10856-010-4139-9. Search in Google Scholar

O’Donnell M.D., Candarlioglu P.L., Miller C.A., Gentleman E., Stevens M.M., Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, J. Mater. Chem., 2010, 20, 8934, DOI: 10.1039/c0jm01139h. Search in Google Scholar

Pasquet J., Chevalier Y., Pelletier J., Couval E., Bouvier D., Bolzinger M.A., The contribution of zinc ions to the antimicrobial activity of zinc oxide, Colloids Surfaces A Physicochem Eng. Asp., 2014, 457, 263–274, DOI: 10.1016/j.colsurfa.2014.05.057. Search in Google Scholar

Saino E., Grandi S., Quartarone E., Maliardi V., Galli D., Bloise N., In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass, Eur. Cells Mater., 2011, 21, 59–72, DOI: 10.22203/eCM.v021a05. Search in Google Scholar

Saravanapavan P., Hench L.L., Mesoporous calcium silicate glasses. I. Synthesis, J. Non. Cryst. Solids, 2003, 318, 1–13, DOI: 10.1016/S0022-3093(02)01864-1. Search in Google Scholar

Sergi R., Bellucci D., Cannillo V., A review of bioactive glass/natural polymer composites: State of the art., Materials (Basel), 2020, 13, 1–38, DOI: 10.3390/ma13235560. Search in Google Scholar

da Silva B.L., Abuçafy M.P., Manaia E.B., Junior J.A.O., Chiari-Andréo B.G., Pietro R.C.L.R. et al., Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview, Int. J. Nanomedicine, 2019, 14, 9395–9410, DOI: 10.2147/IJN.S216204. Search in Google Scholar

Strobel L.A., Hild N., Mohn D., Stark W.J., Hoppe A., Gbureck U., Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells, J. Nanoparticle Res., 2013, 15, DOI: 10.1007/s11051-013-1780-5. Search in Google Scholar

Vaid C., Murugavel S., Das C., Asokan S., Mesoporous bioactive glass and glass-ceramics: Influence of the local structure on in vitro bioactivity, Microporous Mesoporous Mater., 2014, 186, 46–56, DOI: 10.1016/j.micromeso.2013.11.027. Search in Google Scholar

Vukomanovic M., Gazvoda L., Anicic N., Rubert M., Suvorov D., Müller R., Multi-doped apatite: Strontium, magnesium, gallium and zinc ions synergistically affect osteogenic stimulation in human mesenchymal cells important for bone tissue engineering, Biomater. Adv., 2022, 140, 213051, DOI: 10.1016/j.bioadv.2022.213051. Search in Google Scholar

Wu C., Ramaswamy Y., Chang J., Woods J., Chen Y., Zreiqat H., The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics, J. Biomed. Mater. Res. – Part B Appl. Biomater., 2008, 87, 346–53, DOI: 10.1002/jbm.b.31109. Search in Google Scholar

Yan M., Song Y., Wong C.P., Hardin K., Ho E., Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells, J. Nutr., 2008, 138, 667–673, DOI: 10.1093/jn/138.4.667. Search in Google Scholar

Zhang D., Hupa M., Hupa L., In situ pH within particle beds of bioactive glasses, Acta Biomater., 2008, 4, 1498–1505, DOI: 10.1016/j.actbio.2008.04.007. Search in Google Scholar

Zheng K., Boccaccini A.R., Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci., 2017, 249, 363–373, DOI: 10.1016/j.cis.2017.03.008. Search in Google Scholar

Zheng K., Lu M., Rutkowski B., Dai X., Yang Y., Taccardi N., ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties, J. Mater. Chem. B, 2016, 4, 7936–7949, DOI: 10.1039/C6TB02053D. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Zellbiologie, Biomechanik, Medizin, Biomedizinische Technik, Materialwissenschaft, Bio- und Naturmaterialien