1. bookVolumen 32 (2022): Heft 1 (March 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-8492
Erstveröffentlichung
05 Apr 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

A Multi–Source Fluid Queue Based Stochastic Model of the Probabilistic Offloading Strategy in a MEC System With Multiple Mobile Devices and a Single MEC Server

Online veröffentlicht: 31 Mar 2022
Volumen & Heft: Volumen 32 (2022) - Heft 1 (March 2022)
Seitenbereich: 125 - 138
Eingereicht: 02 Aug 2021
Akzeptiert: 28 Dec 2021
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-8492
Erstveröffentlichung
05 Apr 2007
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

Mobile edge computing (MEC) is one of the key technologies to achieve high bandwidth, low latency and reliable service in fifth generation (5G) networks. In order to better evaluate the performance of the probabilistic offloading strategy in a MEC system, we give a modeling method to capture the stochastic behavior of tasks based on a multi-source fluid queue. Considering multiple mobile devices (MDs) in a MEC system, we build a multi-source fluid queue to model the tasks offloaded to the MEC server. We give an approach to analyze the fluid queue driven by multiple independent heterogeneous finite-state birth-and-death processes (BDPs) and present the cumulative distribution function (CDF) of the edge buffer content. Then, we evaluate the performance measures in terms of the utilization of the MEC server, the expected edge buffer content and the average response time of a task. Finally, we provide numerical results with some analysis to illustrate the feasibility of the stochastic model built in this paper.

Anick, D., Mitra, D. and Sondhi, M. (1982). Stochastic theory of a data-handling system with multiple sources, Bell System Technical Journal 61(8): 1871–1894.10.1002/j.1538-7305.1982.tb03089.x Search in Google Scholar

Arunachalam, V., Gupta, V. and Dharmaraja, S. (2010). A fluid queue modulated by two independent birth-death processes, Computers and Mathematics with Applications 60(8): 2433–2444.10.1016/j.camwa.2010.08.039 Search in Google Scholar

Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A. and Hanzo, L. (2020). Latency minimization for intelligent reflecting surface aided mobile edge computing, IEEE Journal on Selected Areas in Communications 38(11): 2666–2682.10.1109/JSAC.2020.3007035 Search in Google Scholar

Bista, B., Wang, J. and Takata, T. (2020). Probabilistic computation offloading for mobile edge computing in dynamic network environment, Internet of Things 11, Article no. 100225. Search in Google Scholar

Cardellini, V., Personé, V., Valerio, V., Facchinei, F., Grassi, V., Presti, F. and Piccialli, V. (2016). A game-theoretic approach to computation offloading in mobile cloud computing, Mathematical Programming 157(2): 421–449.10.1007/s10107-015-0881-6 Search in Google Scholar

El-Baz, A., Tarabia, A. and Darwiesh, A. (2020). Cloud storage facility as a fluid queue controlled by Markovian queue, Probability in the Engineering and Informational Sciences: 1–17, DOI: 10.1017/S0269964820000613.10.1017/S0269964820000613 Search in Google Scholar

Elwalid, A. and Mitra, D. (1995). Analysis, approximations and admission control of a multi-service multiplexing system with priorities, Proceedings of International Conference on Computer Communications, INFOCOM 1995, Boston, USA, pp. 463–472. Search in Google Scholar

Fiedler, M. and Voos, H. (2000). New results on the numerical stability of the stochastic fluid flow model analysis, Proceedings of the Networking 2000 Conference, Paris, France, pp. 446–457. Search in Google Scholar

Goścień, R. and Walkowiak, K. (2017). A column generation technique for routing and spectrum allocation in cloud-ready survivable elastic optical networks, International Journal of Applied Mathematics and Computer Science 27(3): 591–603, DOI: 10.1515/amcs-2017-0042.10.1515/amcs-2017-0042 Search in Google Scholar

Hassan, M., Qi, W. and Chen, S. (2015). ELICIT: Efficiently identify computation-intensive tasks in mobile applications for offloading, Proceedings of IEEE International Conference on Networking, Architecture and Storage, NAS 2015, Boston, USA, pp. 12–22. Search in Google Scholar

Kim, J. and Krunz, M. (2000). Bandwidth allocation in wireless networks with guaranteed packet-loss performance, Mathematical Programming 8(3): 337–349.10.1109/90.851980 Search in Google Scholar

Kulkarni, V. (1997). Fluid Models for Single Buffer Systems, CRC Press, Boca Raton. Search in Google Scholar

Lenin, R. and Parthasarathy, P. (2000). Fluid queues driven by an M/M/1/N queue, Mathematical Problems in Engineering 6(5): 439–460.10.1155/S1024123X00001423 Search in Google Scholar

Li, K. (2019). How to stabilize a competitive mobile edge computing environment: A game theoretic approach, IEEE Access 7: 69960–69985.10.1109/ACCESS.2019.2919106 Search in Google Scholar

Li, W. and Jin, S. (2021). Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity, Journal of Supercomputing 77(11): 1286–12507, DOI: 10.1007/S11227-021-03781-W.10.1007/s11227-021-03781-w Search in Google Scholar

Lim, W., Luong, N., Hoang, D., Jiao, Y., Liang, Y., Yang, Q., Niyato, D. and Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey, IEEE Communications Surveys and Tutorials 22(3): 2031–2063.10.1109/COMST.2020.2986024 Search in Google Scholar

Liu, Y., Peng, M., Shou, G., Chen, Y. and Chen, S. (2020). Toward edge intelligence: Multi-access edge computing for 5G and internet of things, IEEE Internet of Things Journal 7(8): 6722–6747.10.1109/JIOT.2020.3004500 Search in Google Scholar

Mao, B., wang, F. and Tian, N. (2012). Fluid model driven by an M/M/1 queue with multiple vacations and N-policy, Journal of Applied Mathematics and Computing 38(1): 119–131.10.1007/s12190-010-0467-7 Search in Google Scholar

Mitra, D. (1988). Stochastic theory of a fluid model of producers and consumers coupled by a buffer, Advances in Applied Probability 20(1): 646–676.10.2307/1427040 Search in Google Scholar

Mukherjee, M., Kumar, V., Kumar, S., Matamy, R., Mavromoustakis, C., Zhang, Q., Shojafar, M. and Mastorakis, G. (2020). Computation offloading strategy in heterogeneous fog computing with energy and delay constraints, Proceedings of IEEE International Conference on Communications, ICC 2020, Dublin, Ireland, pp. 1–5. Search in Google Scholar

Nouri, N., Abouei, J., Jaseemuddin, M. and Anpalagan, A. (2020). Joint access and resource allocation in ultradense mmWave NOMA networks with mobile edge computing, IEEE Internet of Things Journal 7(2): 1531–1547.10.1109/JIOT.2019.2956409 Search in Google Scholar

Razaque, A., Aloqaily, M., Almiani, M., Jararweh, Y. and Srivastava, G. (2021). Efficient and reliable forensics using intelligent edge computing, Future Generation Computer Systems 118: 230–239, DOI: 10.1016/j.future.2021.01.012.10.1016/j.future.2021.01.012 Search in Google Scholar

Sericola, B., Parthasarathy, P. and Vijayashree, K. (2005). Exact transient solution of an M/M/1 driven fluid queue, International Journal of Computer Mathematics 82(6): 659–671.10.1080/00207160512331329041 Search in Google Scholar

Song, F., Ai, Z., Zhang, H., You, I. and Li, S. (2021). Smart collaborative balancing for dependable network components in cyber-physical systems, IEEE Transactions on Industrial Informatics 17(10): 6916–6924.10.1109/TII.2020.3029766 Search in Google Scholar

Virtamo, J. and Norros, I. (1994). Fluid queue driven by an M/M/1 queue, Queueing Systems 16(3): 373–386.10.1007/BF01158963 Search in Google Scholar

Wu, H., Sun, Y. and Wolter, K. (2020). Energy-efficient decision making for mobile cloud offloading, IEEE Transactions on Cloud Computing 8(2): 570–584.10.1109/TCC.2018.2789446 Search in Google Scholar

Xu, X., Shen, B., Ding, S., Srivstava, G., Bilal, M., Khosravi, M., Menon, V., Jan, M. and Wang, M. (2020). Service offloading with deep Q-network for digital twinning empowered internet of vehicles in edge computing, IEEE Transactions on Industrial Informatics 18(2): 1414–1423, DOI: 10.1109/TII.2020.3040180.10.1109/TII.2020.3040180 Search in Google Scholar

Zeifman, A., Razumchik, R., Satin, Y., Kiseleva, K., Korotysheva, A. and Korolev, V. (2018). Bounds on the rate of convergence for one class of inhomogeneous Markovian queueing models with possible batch arrivals and services, International Journal of Applied Mathematics and Computer Science 28(1): 141–154, DOI: 10.2478/amcs-2018-0011.10.2478/amcs-2018-0011 Search in Google Scholar

Zeifman, A., Satin, Y., Kryukova, A., Razumchik, R., Kiseleva, K. and Shilova, G. (2020). On three methods for bounding the rate of convergence for some continuous-time Markov chains, International Journal of Applied Mathematics and Computer Science 30(2): 251–266, DOI: 10.34768/amcs-2020-0020. Search in Google Scholar

Zhao, T., Zhou, S., Guo, X. and Niu, Z. (2017). Tasks scheduling and resource allocation in heterogeneous cloud for delay-bounded mobile edge computing, Proceedings of IEEE International Conference on Communications, ICC 2017, Paris, France, pp. 1–7. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo