Zitieren

Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MK. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol. 2005 Mar 15;174(6):3643–3649. https://doi.org/10.4049/jimmunol.174.6.3643AllenLDockrellDHPatteryTLeeDGCornelisPHellewellPGWhyteMK. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol. 2005Mar15;174(6):36433649. https://doi.org/10.4049/jimmunol.174.6.364315749902Search in Google Scholar

Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014 Aug;71(3):292–301. https://doi.org/10.1111/2049-632X.12125AntunesLCViscaPTownerKJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014Aug;71(3):292301. https://doi.org/10.1111/2049-632X.1212524376225Search in Google Scholar

Bernabeu-Wittel M, Pichardo C, García-Curiel A, Pachón-Ibáñez ME, Ibáñez-Martínez J, Jiménez-Mejías ME, Pachón J. Pharmacokinetic/pharmacodynamic assessment of the in vivo efficacy of imipenem alone or in combination with amikacin for the treatment of experimental multiresistant Acinetobacter baumannii pneumonia. Clin Microbiol Infect 2005;11:319–325. https://doi.org/10.1111/j.1469-0691.2005.01095.xBernabeu-WittelMPichardoCGarcía-CurielAPachón-IbáñezMEIbáñez-MartínezJJiménez-MejíasMEPachónJ. Pharmacokinetic/pharmacodynamic assessment of the in vivo efficacy of imipenem alone or in combination with amikacin for the treatment of experimental multiresistant Acinetobacter baumannii pneumonia. Clin Microbiol Infect2005;11:319325. https://doi.org/10.1111/j.1469-0691.2005.01095.x15760430Search in Google Scholar

Byrne JM, Waack U, Weinstein EA, Joshi A, Shurland SM, Iarikov D, Bulitta JB, Diep BA, Guina T, Hope WW, et al. FDA Public Workshop Summary: advancing animal models for antibacterial drug development. Antimicrob Agents Chemother. 2020 Dec 16;65(1): e01983-20. https://doi.org/10.1128/AAC.01983-20ByrneJMWaackUWeinsteinEAJoshiAShurlandSMIarikovDBulittaJBDiepBAGuinaTHopeWW. FDA Public Workshop Summary: advancing animal models for antibacterial drug development. Antimicrob Agents Chemother. 2020Dec16;65(1): e01983-20. https://doi.org/10.1128/AAC.01983-20792784733106262Search in Google Scholar

Crandon JL, Kim A, Nicolau DP. Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J Antimicrob Chemother. 2009 Oct;64(4):837–839. https://doi.org/10.1093/jac/dkp301CrandonJLKimANicolauDP. Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J Antimicrob Chemother. 2009Oct;64(4):837839. https://doi.org/10.1093/jac/dkp30119696049Search in Google Scholar

Eveillard M, Soltner C, Kempf M, Saint-André JP, Lemarié C, Randrianarivelo C, Seifert H, Wolff M, Joly-Guillou ML. The virulence variability of different Acinetobacter baumannii strains in experimental pneumonia. J Infect. 2010 Feb;60(2):154–161. https://doi.org/10.1016/j.jinf.2009.09.004EveillardMSoltnerCKempfMSaint-AndréJPLemariéCRandrianariveloCSeifertHWolffMJoly-GuillouML. The virulence variability of different Acinetobacter baumannii strains in experimental pneumonia. J Infect. 2010Feb;60(2):154161. https://doi.org/10.1016/j.jinf.2009.09.00419748521Search in Google Scholar

Fournier PE, Richet H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006 Mar 1;42(5):692–699. https://doi.org/10.1086/500202FournierPERichetH. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006Mar1;42(5):692699. https://doi.org/10.1086/50020216447117Search in Google Scholar

García-Patiño MG, García-Contreras R, Licona-Limón P. The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections. Front Immunol. 2017 Apr 12;8:441. https://doi.org/10.3389/fimmu.2017.00441García-PatiñoMGGarcía-ContrerasRLicona-LimónP. The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections. Front Immunol. 2017Apr12;8:441. https://doi.org/10.3389/fimmu.2017.00441538870028446911Search in Google Scholar

Geisinger E, Isberg RR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog. 2015 Feb 13;11(2):e1004691. https://doi.org/10.1371/journal.ppat.1004691GeisingerEIsbergRR. Antibiotic modulation of capsular exopolysaccharide and virulence in Acinetobacter baumannii. PLoS Pathog. 2015Feb13;11(2):e1004691. https://doi.org/10.1371/journal.ppat.1004691433453525679516Search in Google Scholar

Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013 Apr;67(3): 159–173. https://doi.org/10.1111/2049-632X.12033GellatlySLHancockRE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013Apr;67(3): 159173. https://doi.org/10.1111/2049-632X.1203323620179Search in Google Scholar

Gellings PS, Wilkins AA, Morici LA. Recent advances in the pursuit of an effective Acinetobacter baumannii vaccine. Pathogens. 2020 Dec 19;9(12):1066. https://doi.org/10.3390/pathogens9121066GellingsPSWilkinsAAMoriciLA. Recent advances in the pursuit of an effective Acinetobacter baumannii vaccine. Pathogens. 2020Dec19;9(12):1066. https://doi.org/10.3390/pathogens9121066776645833352688Search in Google Scholar

Gong L, Cumpian AM, Caetano MS, Ochoa CE, De la Garza MM, Lapid DJ, Mirabolfathinejad SG, Dickey BF, Zhou Q, Moghaddam SJ. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol Cancer. 2013 Dec 9; 12(1):154. https://doi.org/10.1186/1476-4598-12-154GongLCumpianAMCaetanoMSOchoaCEDe la GarzaMMLapidDJMirabolfathinejadSGDickeyBFZhouQMoghaddamSJ. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol Cancer. 2013Dec9; 12(1):154. https://doi.org/10.1186/1476-4598-12-154392358724321240Search in Google Scholar

Harris G, Kuo Lee R, Lam CK, Kanzaki G, Patel GB, Xu HH, Chen W. A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother. 2013 Aug;57(8):3601–3613. https://doi.org/10.1128/AAC.00944-13HarrisGKuo LeeRLamCKKanzakiGPatelGBXuHHChenW. A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother. 2013Aug;57(8):36013613. https://doi.org/10.1128/AAC.00944-13371975823689726Search in Google Scholar

Jacobs AC, Hood I, Boyd KL, Olson PD, Morrison JM, Carson S, Sayood K, Iwen PC, Skaar EP, Dunman PM. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun. 2010 May;78(5):1952–1962. https://doi.org/10.1128/IAI.00889-09JacobsACHoodIBoydKLOlsonPDMorrisonJMCarsonSSayoodKIwenPCSkaarEPDunmanPM. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun. 2010May;78(5):19521962. https://doi.org/10.1128/IAI.00889-09286350720194595Search in Google Scholar

Joly-Guillou ML, Wolff M, Farinotti R, Bryskier A, Carbon C. In vivo activity of levofloxacin alone or in combination with imipenem or amikacin in a mouse model of Acinetobacter baumannii pneumonia. J Antimicrob Chemother. 2000 Nov;46(5):827–830. https://doi.org/10.1093/jac/46.5.827Joly-GuillouMLWolffMFarinottiRBryskierACarbonC. In vivo activity of levofloxacin alone or in combination with imipenem or amikacin in a mouse model of Acinetobacter baumannii pneumonia. J Antimicrob Chemother. 2000Nov;46(5):827830. https://doi.org/10.1093/jac/46.5.82711062208Search in Google Scholar

Kamath AB, Alt J, Debbabi H, Taylor C, Behar SM. The major histocompatibility complex haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect Immun. 2004 Dec;72(12):6790–6798. https://doi.org/10.1128/IAI.72.12.6790-6798.2004KamathABAltJDebbabiHTaylorCBeharSM. The major histocompatibility complex haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect Immun. 2004Dec;72(12):67906798. https://doi.org/10.1128/IAI.72.12.6790-6798.200452914515557599Search in Google Scholar

Kamoshida G, Kikuchi-Ueda T, Nishida S, Tansho-Nagakawa S, Ubagai T, Ono Y. Pathogenic bacterium Acinetobacter baumannii inhibits the formation of neutrophil extracellular traps by suppressing neutrophil adhesion. Front Immunol. 2018 Feb 7;9:178. https://doi.org/10.3389/fimmu.2018.00178KamoshidaGKikuchi-UedaTNishidaSTansho-NagakawaSUbagaiTOnoY. Pathogenic bacterium Acinetobacter baumannii inhibits the formation of neutrophil extracellular traps by suppressing neutrophil adhesion. Front Immunol. 2018Feb7;9:178. https://doi.org/10.3389/fimmu.2018.00178580834029467765Search in Google Scholar

Kamoshida G, Tansho-Nagakawa S, Kikuchi-Ueda T, Nakano R, Hikosaka K, Nishida S, Ubagai T, Higashi S, Ono Y. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8. J Leukoc Biol. 2016 Dec; 100(6):1405–1412. https://doi.org/10.1189/jlb.4AB0116-023RRKamoshidaGTansho-NagakawaSKikuchi-UedaTNakanoRHikosakaKNishidaSUbagaiTHigashiSOnoY. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8. J Leukoc Biol. 2016Dec; 100(6):14051412. https://doi.org/10.1189/jlb.4AB0116-023RR27365529Search in Google Scholar

Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents. 2012 Feb;39(2):105–114. https://doi.org/10.1016/j.ijantimicag.2011.10.004KempfMRolainJM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents. 2012Feb;39(2):105114. https://doi.org/10.1016/j.ijantimicag.2011.10.00422113193Search in Google Scholar

Kim CH, Kim DJ, Lee SJ, Jeong YJ, Kang MJ, Lee JY, Choi JA, Kwon SJ, Park JH, Park JH. Toll-like receptor 2 promotes bacterial clearance during the initial stage of pulmonary infection with Acinetobacter baumannii. Mol Med Rep. 2014 Apr;9(4):1410–1414. https://doi.org/10.3892/mmr.2014.1966KimCHKimDJLeeSJJeongYJKangMJLeeJYChoiJAKwonSJParkJHParkJH. Toll-like receptor 2 promotes bacterial clearance during the initial stage of pulmonary infection with Acinetobacter baumannii. Mol Med Rep. 2014Apr;9(4):14101414. https://doi.org/10.3892/mmr.2014.196624567035Search in Google Scholar

Knapp S, Wieland CW, Florquin S, Pantophlet R, Dijkshoorn L, Tshimbalanga N, Akira S, van der Poll T. Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med. 2006 Jan 1;173(1):122–129. https://doi.org/10.1164/rccm.200505-730OCKnappSWielandCWFlorquinSPantophletRDijkshoornLTshimbalangaNAkiraSvan der PollT. Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med. 2006Jan1;173(1):122129. https://doi.org/10.1164/rccm.200505-730OC16210672Search in Google Scholar

La Scola B, Gundi VA, Khamis A, Raoult D. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol. 2006 Mar;44(3):827–832. https://doi.org/10.1128/JCM.44.3.827-832.2006La ScolaBGundiVAKhamisARaoultD. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol. 2006Mar;44(3):827832. https://doi.org/10.1128/JCM.44.3.827-832.2006139313116517861Search in Google Scholar

Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004 Jul;72(7):4275–4278. https://doi.org/10.1128/IAI.72.7.4275-4278.2004LauGWRanHKongFHassettDJMavrodiD. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun. 2004Jul;72(7):42754278. https://doi.org/10.1128/IAI.72.7.4275-4278.200442741215213173Search in Google Scholar

Lee HH, Aslanyan L, Vidyasagar A, Brennan MB, Tauber MS, Carrillo-Sepulveda MA, Dores MR, Rigel NW, Martinez LR. Depletion of alveolar macrophages increases pulmonary neutrophil infiltration, tissue damage, and sepsis in a murine model of Acinetobacter baumannii pneumonia. Infect Immun. 2020 Jun 22; 88(7):e00128-20. https://doi.org/10.1128/IAI.00128-20LeeHHAslanyanLVidyasagarABrennanMBTauberMSCarrillo-SepulvedaMADoresMRRigelNWMartinezLR. Depletion of alveolar macrophages increases pulmonary neutrophil infiltration, tissue damage, and sepsis in a murine model of Acinetobacter baumannii pneumonia. Infect Immun. 2020Jun22; 88(7):e00128-20. https://doi.org/10.1128/IAI.00128-20730962532366576Search in Google Scholar

Luna BM, Yan J, Reyna Z, Moon E, Nielsen TB, Reza H, Lu P, Bonomo R, Louie A, Drusano G, et al. Natural history of Acinetobacter baumannii infection in mice. PLoS One. 2019 Jul 18;14(7): e0219824. https://doi.org/10.1371/journal.pone.0219824LunaBMYanJReynaZMoonENielsenTBRezaHLuPBonomoRLouieADrusanoG. Natural history of Acinetobacter baumannii infection in mice. PLoS One. 2019Jul18;14(7): e0219824. https://doi.org/10.1371/journal.pone.0219824663895431318907Search in Google Scholar

Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 2019 Apr 1;10:539. https://doi.org/10.3389/fmicb.2019.00539MulaniMSKambleEEKumkarSNTawreMSPardesiKR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 2019Apr1;10:539. https://doi.org/10.3389/fmicb.2019.00539645277830988669Search in Google Scholar

Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008 Mar 20;358(12):1271–81. https://doi.org/10.1056/NEJMra070741Munoz-PriceLSWeinsteinRA. Acinetobacter infection. N Engl J Med. 2008Mar20;358(12):127181. https://doi.org/10.1056/NEJMra07074118354105Search in Google Scholar

Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008 Jul;21(3): 538–582. https://doi.org/10.1128/CMR.00058-07PelegAYSeifertHPatersonDL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008Jul;21(3): 538582. https://doi.org/10.1128/CMR.00058-07249308818625687Search in Google Scholar

Qiu H, KuoLee R, Harris G, Chen W. High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes Infect. 2009a Oct;11(12):946–955. https://doi.org/10.1016/j.micinf.2009.06.003QiuHKuoLeeRHarrisGChenW. High susceptibility to respiratory Acinetobacter baumannii infection in A/J mice is associated with a delay in early pulmonary recruitment of neutrophils. Microbes Infect. 2009aOct;11(12):946955. https://doi.org/10.1016/j.micinf.2009.06.00319573619Search in Google Scholar

Qiu H, Kuolee R, Harris G, Chen W. Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun. 2009b Mar;77(3):1015–1021. https://doi.org/10.1128/IAI.01029-08QiuHKuoleeRHarrisGChenW. Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun. 2009bMar;77(3):10151021. https://doi.org/10.1128/IAI.01029-08264362019103777Search in Google Scholar

Qiu H, KuoLee R, Harris G, Van Rooijen N, Patel GB, Van Rooijen N, Patel GB, Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS One. 2012;7(6):e40019. https://doi.org/10.1371/journal.pone.0040019QiuHKuoLeeRHarrisGVan RooijenNPatelGBVan RooijenNPatelGBChenW. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS One. 2012;7(6):e40019. https://doi.org/10.1371/journal.pone.0040019338692922768201Search in Google Scholar

Sato Y, Unno Y, Miyazaki C, Ubagai T, Ono Y. Multidrug-resistant Acinetobacter baumannii resists reactive oxygen species and survives in macrophages. Sci Rep. 2019 Nov 25;9(1):17462. https://doi.org/10.1038/s41598-019-53846-3SatoYUnnoYMiyazakiCUbagaiTOnoY. Multidrug-resistant Acinetobacter baumannii resists reactive oxygen species and survives in macrophages. Sci Rep. 2019Nov25;9(1):17462. https://doi.org/10.1038/s41598-019-53846-3687755231767923Search in Google Scholar

Uppalapati, SR., Sett A, Pathania, R. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front Microbiol. 2020 Oct 6;11:589234. https://doi.org/10.3389/fmicb.2020.589234UppalapatiSR.SettAPathaniaR. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front Microbiol. 2020Oct6;11:589234. https://doi.org/10.3389/fmicb.2020.589234757354733123117Search in Google Scholar

Usher LR, Lawson RA, Geary I, Taylor CJ, Bingle CD, Taylor GW, Whyte MK. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol. 2002 Feb 15;168(4):1861–1868. https://doi.org/10.4049/jimmunol.168.4.1861UsherLRLawsonRAGearyITaylorCJBingleCDTaylorGWWhyteMK. Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol. 2002Feb15;168(4):18611868. https://doi.org/10.4049/jimmunol.168.4.186111823520Search in Google Scholar

Ushizawa H, Yahata Y, Endo T, Iwashima T, Misawa M, Sonobe M, Yamagishi T, Kamiya H, Nakashima K, Matsui T, et al. A epidemiological investigation of a nosocomial outbreak of multidrug-resistant Acinetobacter baumannii in a Critical Care Center in Japan, 2011–2012. Jpn J Infect Dis. 2016;69(2):143–148. https://doi.org/10.7883/yoken.JJID.2015.049UshizawaHYahataYEndoTIwashimaTMisawaMSonobeMYamagishiTKamiyaHNakashimaKMatsuiT. A epidemiological investigation of a nosocomial outbreak of multidrug-resistant Acinetobacter baumannii in a Critical Care Center in Japan, 2011–2012. Jpn J Infect Dis. 2016;69(2):143148. https://doi.org/10.7883/yoken.JJID.2015.04926073736Search in Google Scholar

van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun. 2007 Dec;75(12):5597–5608. https://doi.org/10.1128/IAI.00762-07van FaassenHKuoLeeRHarrisGZhaoXConlanJWChenW. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun. 2007Dec;75(12):55975608. https://doi.org/10.1128/IAI.00762-07216834717908807Search in Google Scholar

Yong VF, Soh MM, Jaggi TK, Mac Aogáin M, Chotirmall SH. The microbial endocrinology of Pseudomonas aeruginosa: inflammatory and immune perspectives. Arch Immunol Ther Exp. 2018 Oct;66(5):329–339. https://doi.org/10.1007/s00005-018-0510-1YongVFSohMMJaggiTKMac AogáinMChotirmallSH. The microbial endocrinology of Pseudomonas aeruginosa: inflammatory and immune perspectives. Arch Immunol Ther Exp. 2018Oct;66(5):329339. https://doi.org/10.1007/s00005-018-0510-129541797Search in Google Scholar

Zeng X, Gu H, Cheng Y, Jia KR, Liu D, Yuan Y, Chen ZF, Peng LS, Zou QM, Shi Y. A lethal pneumonia model of Acinetobacter baumannii: an investigation in immunocompetent mice. lin Microbiol Infect. 2019 Apr;25(4):516.e1-516.e4. https://doi.org/10.1016/j.cmi.2018.12.020ZengXGuHChengYJiaKRLiuDYuanYChenZFPengLSZouQMShiY. A lethal pneumonia model of Acinetobacter baumannii: an investigation in immunocompetent mice. lin Microbiol Infect. 2019Apr;25(4):516.e1-516.e4. https://doi.org/10.1016/j.cmi.2018.12.02030583061Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie