Zitieren

Abakari G, Luo G, Kombat EO. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquacult Fish. 2020a;Article in Press. https://doi.org/10.1016/j.aaf.2020.05.005AbakariGLuoGKombatEO. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review.Aquacult Fish.2020a;Article in Press. https://doi.org/10.1016/j.aaf.2020.05.00510.1016/j.aaf.2020.05.005Search in Google Scholar

Abakari G, Luo G, Meng H, Yang Z, Owusu-Afriyie G, Kombat EO, Alhassan EH. The use of biochar in the production of tilapia (Oreochromis niloticus) in a biofloc technology system – BFT. Aquacult Eng. 2020b Nov;91:102123. https://doi.org/10.1016/j.aquaeng.2020.102123AbakariGLuoGMengHYangZOwusu-AfriyieGKombatEOAlhassanEH. The use of biochar in the production of tilapia (Oreochromis niloticus) in a biofloc technology system – BFT.Aquacult Eng.2020bNov;91:102123. https://doi.org/10.1016/j.aquaeng.2020.10212310.1016/j.aquaeng.2020.102123Search in Google Scholar

Ahmad I, Babitha Rani AM, Verma AK, Maqsood M. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult Int. 2017 Jun;25(3):1215–1226. https://doi.org/10.1007/s10499-016-0108-8AhmadIBabitha RaniAMVermaAKMaqsoodM. Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult Int.2017Jun;25(3):12151226. https://doi.org/10.1007/s10499-016-0108-810.1007/s10499-016-0108-8Search in Google Scholar

Anand PSS, Kohli MPS, Kumar S, Sundaray JK, Roy SD, Venkateshwarlu G, Sinha A, Pailan GH. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture. 2014 Jan;418–419:108–115. https://doi.org/10.1016/j.aquaculture.2013.09.051AnandPSSKohliMPSKumarSSundarayJKRoySDVenkateshwarluGSinhaAPailanGH. Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodonAquaculture.2014Jan;418–419:108115. https://doi.org/10.1016/j.aquaculture.2013.09.05110.1016/j.aquaculture.2013.09.051Search in Google Scholar

Arias-Moscoso JL, Espinoza-Barrón LG, Miranda-Baeza A, Rivas-Vega ME, Nieves-Soto M. Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zero water exchange. Aquacult Rep. 2018 Aug;11:47–52. https://doi.org/10.1016/j.aqrep.2018.06.001Arias-MoscosoJLEspinoza-BarrónLGMiranda-BaezaARivas-VegaMENieves-SotoM. Effect of commercial probiotics addition in a biofloc shrimp farm during the nursery phase in zero water exchange. Aquacult Rep.2018Aug;11:4752. https://doi.org/10.1016/j.aqrep.2018.06.00110.1016/j.aqrep.2018.06.001Search in Google Scholar

Avnimelech Y, Kochva M, Diab S. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Isr J Aquacult Bamidgeh. 1994; 46(3):119–131.AvnimelechYKochvaMDiabS. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Isr J Aquacult Bamidgeh.1994; 46(3):119131.Search in Google Scholar

Avnimelech Y. Biofloc technology: a practical guide book. Sorrento (USA): World Aquaculture Society; 2009.AvnimelechY. Biofloc technology: a practical guide book. Sorrento (USA): World Aquaculture Society; 2009.Search in Google Scholar

Azim ME, Little DC, Bron JE. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour Technol. 2008 Jun; 99(9): 3590–3599. https://doi.org/10.1016/j.biortech.2007.07.063AzimMELittleDCBronJE. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture. Bioresour Technol.2008Jun; 99(9): 35903599. https://doi.org/10.1016/j.biortech.2007.07.06310.1016/j.biortech.2007.07.06317869097Search in Google Scholar

Badiola M, Basurko OC, Piedrahita R, Hundley P, Mendiola D. Energy use in recirculating aquaculture systems (RAS): A review. Aquacult Eng. 2018 May;81:57–70. https://doi.org/10.1016/j.aquaeng.2018.03.003BadiolaMBasurkoOCPiedrahitaRHundleyPMendiolaD. Energy use in recirculating aquaculture systems (RAS): A review. Aquacult Eng.2018May;81:5770. https://doi.org/10.1016/j.aquaeng.2018.03.00310.1016/j.aquaeng.2018.03.003Search in Google Scholar

Bossier P, Ekasari J. Biofloc technology application in aquaculture to support sustainable development goals. Microb Biotechnol. 2017 Sep;10(5):1012–1016. https://doi.org/10.1111/1751-7915.12836BossierPEkasariJ. Biofloc technology application in aquaculture to support sustainable development goals. Microb Biotechnol.2017Sep;10(5):10121016. https://doi.org/10.1111/1751-7915.1283610.1111/1751-7915.12836560922928941177Search in Google Scholar

Chen S, Ling J, Blancheton JP. Nitrification kinetics of biofilm as affected by water quality factors. Aquacult Eng. 2006 May;34(3): 179–197. https://doi.org/10.1016/j.aquaeng.2005.09.004ChenSLingJBlanchetonJP. Nitrification kinetics of biofilm as affected by water quality factors. Aquacult Eng.2006May;34(3): 179197. https://doi.org/10.1016/j.aquaeng.2005.09.00410.1016/j.aquaeng.2005.09.004Search in Google Scholar

Chen X, Luo G, Meng H, Tan H. Effect of the particle size on the ammonia removal rate and the bacterial community composition of bioflocs. Aquacult Eng. 2019 Aug;86:102001. https://doi.org/10.1016/j.aquaeng.2019.102001ChenXLuoGMengHTanH. Effect of the particle size on the ammonia removal rate and the bacterial community composition of bioflocs. Aquacult Eng.2019Aug;86:102001. https://doi.org/10.1016/j.aquaeng.2019.10200110.1016/j.aquaeng.2019.102001Search in Google Scholar

Choo HX, Caipang CMA. Biofloc technology (BFT) and its application towards improved production in freshwater tilapia culture. Aquacult Aquarium Conserv Legis. 2015;8(3):362–366.ChooHXCaipangCMA. Biofloc technology (BFT) and its application towards improved production in freshwater tilapia culture. Aquacult Aquarium Conserv Legis.2015;8(3):362366.Search in Google Scholar

Crab R, Defoirdt T, Bossier P, Verstraete W. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture. 2012 Aug;356–357:351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046CrabRDefoirdtTBossierPVerstraeteW. Biofloc technology in aquaculture: beneficial effects and future challenges.Aquaculture. 2012Aug;356–357:351356. https://doi.org/10.1016/j.aquaculture.2012.04.04610.1016/j.aquaculture.2012.04.046Search in Google Scholar

Deb S, Noori MT, Rao PS. Application of biofloc technology for Indian major carp culture (polyculture) along with water quality management. Aquacult Eng. 2020 Nov;91:102106. https://doi.org/10.1016/j.aquaeng.2020.102106DebSNooriMTRaoPS. Application of biofloc technology for Indian major carp culture (polyculture) along with water quality management. Aquacult Eng.2020Nov;91:102106. https://doi.org/10.1016/j.aquaeng.2020.10210610.1016/j.aquaeng.2020.102106Search in Google Scholar

Durigon EG, Lazzari R, Uczay J, Lopes DLA, Jerônimo GT, Sgnaulin T, Emerenciano MGC. Biofloc technology (BFT): adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult Fish. 2020 Jan;5(1):42–51. https://doi.org/10.1016/j.aaf.2019.07.001DurigonEGLazzariRUczayJLopesDLAJerônimoGTSgnaulinTEmerencianoMGC. Biofloc technology (BFT): adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult Fish.2020Jan;5(1):4251. https://doi.org/10.1016/j.aaf.2019.07.00110.1016/j.aaf.2019.07.001Search in Google Scholar

Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin M Jr, Bossier P, De Schryver P. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 2015 Apr;441:72–77. https://doi.org/10.1016/j.aquaculture.2015.02.019EkasariJRivandiDRFirdausiAPSurawidjajaEHZairinMJrBossierPDe SchryverP. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture.2015Apr;441:7277. https://doi.org/10.1016/j.aquaculture.2015.02.01910.1016/j.aquaculture.2015.02.019Search in Google Scholar

Ekasari J. Biofloc technology as an integral approach to enhance production and ecological performance of aquaculture. Ghent (Belgium): Ghent University; 2014.EkasariJ. Biofloc technology as an integral approach to enhance production and ecological performance of aquaculture. Ghent (Belgium): Ghent University; 2014.Search in Google Scholar

Elayaraja S, Mabrok M, Algammal A, Sabitha E, Rajeswari MV, Zágoršek K, Ye Z, Zhu S, Rodkhum C. Potential influence of jaggery-based biofloc technology at different C:N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020 Dec;107 Pt A:118–128. https://doi.org/10.1016/j.fsi.2020.09.023ElayarajaSMabrokMAlgammalASabithaERajeswariMVZágoršekKYeZZhuSRodkhumC. Potential influence of jaggery-based biofloc technology at different C:N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol.2020Dec;107Pt A:118128. https://doi.org/10.1016/j.fsi.2020.09.02310.1016/j.fsi.2020.09.02332961293Search in Google Scholar

Emerenciano MGC, Gaxiola G, Cuzon G. Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD, editor. Biomass now-cultivation and utilization. London (UK): IntechOpen; 2013. p. 301–328. https://doi.org/10.5772/53902EmerencianoMGCGaxiolaGCuzonG. Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: MatovicMD, editor. Biomass now-cultivation and utilization. London (UK): IntechOpen; 2013. p. 301328. https://doi.org/10.5772/5390210.5772/53902Search in Google Scholar

Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A. Biofloc technology (BFT): a tool for water quality management in aquaculture. In: Tutu H, editor. Water Quality. London (UK): IntechOpen; 2017 Jan 18;5:92–109. https://doi.org/10.5772/66416EmerencianoMGCMartínez-CórdovaLRMartínez-PorchasMMiranda-BaezaA. Biofloc technology (BFT): a tool for water quality management in aquaculture. In: TutuH, editor. Water Quality. London (UK): IntechOpen; 2017Jan 18;5:92109. https://doi.org/10.5772/6641610.5772/66416Search in Google Scholar

Ferreira GS, Bolívar NC, Pereira SA, Guertler C, Vieira FN, Mouriño JLP, Seiffert WQ. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture. 2015 Nov; 448:273–279. https://doi.org/10.1016/j.aquaculture.2015.06.006FerreiraGSBolívarNCPereiraSAGuertlerCVieiraFNMouriñoJLPSeiffertWQ. Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture.2015Nov; 448:273279. https://doi.org/10.1016/j.aquaculture.2015.06.00610.1016/j.aquaculture.2015.06.006Search in Google Scholar

Fischer H, Romano N, Renukdas N, Egnew N, Sinha AK, Ray AJ. The potential of rearing juveniles of bluegill, Lepomis macrochirus, in a biofloc system. Aquacult Rep. 2020 Jul;17:100398. https://doi.org/10.1016/j.aqrep.2020.100398FischerHRomanoNRenukdasNEgnewNSinhaAKRayAJ. The potential of rearing juveniles of bluegill, Lepomis macrochirus, in a biofloc system. Aquacult Rep.2020Jul;17:100398. https://doi.org/10.1016/j.aqrep.2020.10039810.1016/j.aqrep.2020.100398Search in Google Scholar

Fleckenstein LJ, Tierney TW, Ray AJ. Comparing biofloc, clear-water, and hybrid recirculating nursery systems (Part II): Tilapia (Oreochromis niloticus) production and water quality dynamics. Aquacult Eng. 2018 Aug;82:80–85. https://doi.org/10.1016/j.aquaeng.2018.06.006FleckensteinLJTierneyTWRayAJ. Comparing biofloc, clear-water, and hybrid recirculating nursery systems (Part II): Tilapia (Oreochromis niloticus) production and water quality dynamics. Aquacult Eng.2018Aug;82:8085. https://doi.org/10.1016/j.aquaeng.2018.06.00610.1016/j.aquaeng.2018.06.006Search in Google Scholar

Gallardo-Collí A, Pérez-Rostro CI, Hernández-Vergara MP. Reuse of water from biofloc technology for intensive culture of Nile tilapia (Oreochromis niloticus): effects on productive performance, organosomatic indices and body composition. Int Aquatic Research. 2019 Mar;11(1):43–55. https://doi.org/10.1007/s40071-019-0218-9Gallardo-CollíAPérez-RostroCIHernández-VergaraMP. Reuse of water from biofloc technology for intensive culture of Nile tilapia (Oreochromis niloticus): effects on productive performance, organosomatic indices and body composition. Int Aquatic Research.2019Mar;11(1):4355. https://doi.org/10.1007/s40071-019-0218-910.1007/s40071-019-0218-9Search in Google Scholar

Hargreaves JA. Biofloc production systems for aquaculture. Stoneville (USA): Southern Regional Aquaculture Center; 2013. p. 1–11.HargreavesJA. Biofloc production systems for aquaculture. Stoneville (USA): Southern Regional Aquaculture Center; 2013. p. 111.Search in Google Scholar

Hisano H, Barbosa PTL, Hayd LA, Mattioli CC. Evaluation of Nile tilapia in monoculture and polyculture with giant freshwater prawn in biofloc technology system and in recirculation aquaculture system. Int Aquatic Research. 2019 Dec;11(4):335–346. https://doi.org/10.1007/s40071-019-00242-2HisanoHBarbosaPTLHaydLAMattioliCC. Evaluation of Nile tilapia in monoculture and polyculture with giant freshwater prawn in biofloc technology system and in recirculation aquaculture system. Int Aquatic Research.2019Dec;11(4):335346. https://doi.org/10.1007/s40071-019-00242-210.1007/s40071-019-00242-2Search in Google Scholar

Holanda M, Santana G, Furtado P, Rodrigues RV, Cerqueira VR, Sampaio LA, Wasielesky W Jr, Poersch LH. Evidence of total suspended solids control by Mugil liza reared in an integrated system with pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquacult Rep. 2020 Nov;18:100479. https://doi.org/10.1016/j.aqrep.2020.100479HolandaMSantanaGFurtadoPRodriguesRVCerqueiraVRSampaioLAWasieleskyWJrPoerschLH. Evidence of total suspended solids control by Mugil liza reared in an integrated system with pacific white shrimp Litopenaeus vannamei using biofloc technology. Aquacult Rep.2020Nov;18:100479. https://doi.org/10.1016/j.aqrep.2020.10047910.1016/j.aqrep.2020.100479Search in Google Scholar

Hopkins JS, Hamilton RD, Sandier PA, Browdy CL, Stokes AD. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. J World Aquacult Soc. 1993 Sep;24(3):304–320. https://doi.org/10.1111/j.1749-7345.1993.tb00162.xHopkinsJSHamiltonRDSandierPABrowdyCLStokesAD. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds.J World Aquacult Soc.1993Sep;24(3):304320. https://doi.org/10.1111/j.1749-7345.1993.tb00162.x10.1111/j.1749-7345.1993.tb00162.xSearch in Google Scholar

Jamal MT, Ahmed Sumon MA, Pugazhendi A, Al Harbi M, Hussain MA, Haque MF. Use of probiotics in commercially important finfish aquaculture. Int J Probiotics Prebiotics. 2020 Apr 07;15(1):7–21. https://doi.org/10.37290/ijpp2641-7197.15:7-21JamalMTAhmed SumonMAPugazhendiAAl HarbiMHussainMAHaqueMF. Use of probiotics in commercially important finfish aquaculture. Int J Probiotics Prebiotics.2020Apr 07;15(1):721. https://doi.org/10.37290/ijpp2641-7197.15:7-2110.37290/ijpp2641-7197.15:7-21Search in Google Scholar

Kabir A. Aba M. Biofloc an ultimate solution for sustainable aquaculture in Africa [Internet]. 2019 [cited 2020 May]. Available from https://aquacultureinafrica.com/?p=1589KabirAAbaM. Biofloc an ultimate solution for sustainable aquaculture in Africa [Internet]. 2019[cited 2020 May]. Available from https://aquacultureinafrica.com/?p=1589Search in Google Scholar

Kim Y-S, Kim S-E, Kim S-J, Jung H-K, Park J, Jeon YJ, Kim D-H, Kang J-H, Kim K-H. Effects of wheat flour and culture period on bacterial community composition in digestive tracts of Litopenaeus vannamei and rearing water in biofloc aquaculture system. Aquaculture. 2021;531:735908. https://doi.org/10.1016/j.aquaculture.2020.735908KimY-SKimS-EKimS-JJungH-KParkJJeonYJKimD-HKangJ-HKimK-H. Effects of wheat flour and culture period on bacterial community composition in digestive tracts of Litopenaeus vannamei and rearing water in biofloc aquaculture system.Aquaculture.2021;531:735908. https://doi.org/10.1016/j.aquaculture.2020.73590810.1016/j.aquaculture.2020.735908Search in Google Scholar

Kuhn DD, Boardman GD, Lawrence AL, Marsh L, Flick GJ Jr. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture. 2009 Nov;296(1–2): 51–57. https://doi.org/10.1016/j.aquaculture.2009.07.025KuhnDDBoardmanGDLawrenceALMarshLFlickGJJr.Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture.2009Nov;296(1–2): 5157. https://doi.org/10.1016/j.aquaculture.2009.07.02510.1016/j.aquaculture.2009.07.025Search in Google Scholar

Kuhn DD, Lawrence AL, Boardman GD, Patnaik S, Marsh L, Flick GJ Jr. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2010a May;303(1–4): 28–33. https://doi.org/10.1016/j.aquaculture.2010.03.001KuhnDDLawrenceALBoardmanGDPatnaikSMarshLFlickGJJr.Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture.2010aMay;303(1–4): 2833. https://doi.org/10.1016/j.aquaculture.2010.03.00110.1016/j.aquaculture.2010.03.001Search in Google Scholar

Kuhn DD, Smith SA, Boardman GD, Angier MW, Marsh L, Flick GJ Jr. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: impacts on survival, growth, antennae length, and pathology. Aquaculture. 2010b Nov;309(1–4):109–114. https://doi.org/10.1016/j.aquaculture.2010.09.014KuhnDDSmithSABoardmanGDAngierMWMarshLFlickGJJr.Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: impacts on survival, growth, antennae length, and pathology. Aquaculture.2010bNov;309(1–4):109114. https://doi.org/10.1016/j.aquaculture.2010.09.01410.1016/j.aquaculture.2010.09.014Search in Google Scholar

Kumar A, Reddy A, Rani A, Rathore G, Lakra W, Jayant M. Water quality and nutrient dynamics of biofloc with different C/N ratios in inland saline water. J Animal Res. 2019 Oct 15;9(5):783–791. https://doi.org/10.30954/2277-940X.05.2019.23KumarAReddyARaniARathoreGLakraWJayantM. Water quality and nutrient dynamics of biofloc with different C/N ratios in inland saline water.J Animal Res.2019Oct 15;9(5):783791. https://doi.org/10.30954/2277-940X.05.2019.2310.30954/2277-940X.05.2019.23Search in Google Scholar

Laice LM, Corrêa Filho RAC, Ventura AS, Farias KNN, Silva ALN, Fernandes CE, Silva ACF, Barbosa PTL, de Souza AI, Emerenciano MGC, et al. Use of symbiotics in biofloc (BFT)-based Nile tilapia culture: production performance, intestinal morphometry and hematological parameters. Aquaculture. 2021 Jan;530:735715. https://doi.org/10.1016/j.aquaculture.2020.735715LaiceLMCorrêa FilhoRACVenturaASFariasKNNSilvaALNFernandesCESilvaACFBarbosaPTLde SouzaAIEmerencianoMGCUse of symbiotics in biofloc (BFT)-based Nile tilapia culture: production performance, intestinal morphometry and hematological parameters. Aquaculture.2021Jan;530:735715. https://doi.org/10.1016/j.aquaculture.2020.73571510.1016/j.aquaculture.2020.735715Search in Google Scholar

Lin YC, Chen JC. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. J Exp Mar Biol Ecol. 2001 Apr;259(1):109–119. https://doi.org/10.1016/S0022-0981(01)00227-1LinYCChenJC. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels.J Exp Mar Biol Ecol.2001Apr;259(1):109119. https://doi.org/10.1016/S0022-0981(01)00227-110.1016/S0022-0981(01)00227-1Search in Google Scholar

Liu H, Li H, Wei H, Zhu X, Han D, Jin J, Yang Y, Xie S. Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture. 2019 May;506:256–269. https://doi.org/10.1016/j.aquaculture.2019.03.031LiuHLiHWeiHZhuXHanDJinJYangYXieS. Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture.2019May;506:256269. https://doi.org/10.1016/j.aquaculture.2019.03.03110.1016/j.aquaculture.2019.03.031Search in Google Scholar

Menaga M, Felix S, Charulatha M, Gopalakannan A, Mohanasundari C, Boda S. In vivo efficiency of Bacillus sp. isolated from biofloc system on growth, haematological, immunological and antioxidant status of genetically improved farmed tilapia (GIFT). Indian J Exp Biol. 2020;58(10):714–721.MenagaMFelixSCharulathaMGopalakannanAMohanasundariCBodaS. In vivo efficiency of Bacillus sp. isolated from biofloc system on growth, haematological, immunological and antioxidant status of genetically improved farmed tilapia (GIFT). Indian J Exp Biol.2020;58(10):714721.Search in Google Scholar

Nootong K, Pavasant P, Powtongsook S. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system. J World Aquacult Soc. 2011 Jun;42(3):339–346. https://doi.org/10.1111/j.1749-7345.2011.00472.xNootongKPavasantPPowtongsookS. Effects of organic carbon addition in controlling inorganic nitrogen concentrations in a biofloc system.J World Aquacult Soc.2011Jun;42(3):339346. https://doi.org/10.1111/j.1749-7345.2011.00472.x10.1111/j.1749-7345.2011.00472.xSearch in Google Scholar

Panigrahi A, Das RR, Sivakumar MR, Saravanan A, Saranya C, Sudheer NS, Kumaraguru Vasagam KP, Mahalakshmi P, Kannappan S, Gopikrishna G. Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish Shellfish Immunol. 2020 Mar;98:477–487. https://doi.org/10.1016/j.fsi.2020.01.021PanigrahiADasRRSivakumarMRSaravananASaranyaCSudheerNSKumaraguru VasagamKPMahalakshmiPKannappanSGopikrishnaG. Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish Shellfish Immunol.2020Mar;98:477487. https://doi.org/10.1016/j.fsi.2020.01.02110.1016/j.fsi.2020.01.02131945485Search in Google Scholar

Panigrahi A, Saranya C, Kumaran M, Das R. Biofloc technology: standard operating procedure. In: Vijayan kk, editor. Biofloc Technology for Nursery and Growout Aquaculture. Chennai (India): Central Institute of Brackishwater Aquaculture; 2019a. p. 22–32.PanigrahiASaranyaCKumaranMDasR. Biofloc technology: standard operating procedure. In: Vijayankk, editor. Biofloc Technology for Nursery and Growout Aquaculture. Chennai (India): Central Institute of Brackishwater Aquaculture; 2019a. p. 2232.Search in Google Scholar

Panigrahi A, Sundaram M, Chakrapani S, Rajasekar S, Syama Dayal J, Chavali G. Effect of carbon and nitrogen ratio (C:N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system. Aquacult Res. 2019b Jan;50(1):29–41. https://doi.org/10.1111/are.13857PanigrahiASundaramMChakrapaniSRajasekarSSyama DayalJChavaliG. Effect of carbon and nitrogen ratio (C:N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system. Aquacult Res.2019bJan;50(1):2941. https://doi.org/10.1111/are.1385710.1111/are.13857Search in Google Scholar

Park J, Roy LA, Renukdas N, Luna T. Evaluation of a biofloc system for intensive culture of fathead minnows, Pimephales promelas. J World Aquacult Soc. 2017 Aug;48(4):592–601. https://doi.org/10.1111/jwas.12387ParkJRoyLARenukdasNLunaT. Evaluation of a biofloc system for intensive culture of fathead minnows, Pimephales promelasJ World Aquacult Soc.2017Aug;48(4):592601. https://doi.org/10.1111/jwas.1238710.1111/jwas.12387Search in Google Scholar

Prangnell DI, Castro LF, Ali AS, Browdy CL, Samocha TM. The performance of juvenile Litopenaeus vannamei fed commercial diets of differing protein content, in a super-intensive biofloc-dominated system. J Appl Aquacult. 2020 May;25:1–22. https://doi.org/10.1080/10454438.2020.1766632PrangnellDICastroLFAliASBrowdyCLSamochaTM. The performance of juvenile Litopenaeus vannamei fed commercial diets of differing protein content, in a super-intensive biofloc-dominated system.J Appl Aquacult.2020May;25:122. https://doi.org/10.1080/10454438.2020.176663210.1080/10454438.2020.1766632Search in Google Scholar

Ray AJ, Dillon KS, Lotz JM. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacult Eng. 2011 Nov;45(3):127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001RayAJDillonKSLotzJM. Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquacult Eng.2011Nov;45(3):127136. https://doi.org/10.1016/j.aquaeng.2011.09.00110.1016/j.aquaeng.2011.09.001Search in Google Scholar

Reddy J. Biofloc fish farming advantages, Training in India [Internet]. 2019 [cited 2020 May]. Available from https://www.agrifarming. in/biofloc-fish-farming-advantages-training-in-indiaReddyJ. Biofloc fish farming advantages, Training in India [Internet]. 2019[cited 2020 May]. Available from https://www.agrifarming. in/biofloc-fish-farming-advantages-training-in-indiaSearch in Google Scholar

Samocha T, Schveitzer R, Krummenauer D, Morris T. Recent advances in super-intensive, zeroexchange shrimp raceway systems. Global Aquacult Advocate. 2012;15(6):70–71.SamochaTSchveitzerRKrummenauerDMorrisT. Recent advances in super-intensive, zeroexchange shrimp raceway systems. Global Aquacult Advocate.2012;15(6):7071.Search in Google Scholar

Sandoval-Vargas LY, Jiménez-Amaya MN, Rodríguez-Pulido J, Guaje-Ramírez DN, Ramírez-Merlano JA, Medina-Robles VM. Applying biofloc technology in the culture of juvenile of Piaractus brachypomus (Cuvier, 1818): effects on zootechnical performance and water quality. Aquacult Res. 2020 Sep;51(9):3865–3878. https://doi.org/10.1111/are.14734Sandoval-VargasLYJiménez-AmayaMNRodríguez-PulidoJGuaje-RamírezDNRamírez-MerlanoJAMedina-RoblesVM. Applying biofloc technology in the culture of juvenile of Piaractus brachypomus (Cuvier, 1818): effects on zootechnical performance and water quality. Aquacult Res.2020Sep;51(9):38653878. https://doi.org/10.1111/are.1473410.1111/are.14734Search in Google Scholar

Sharma A, Singh R, Bandhana, Sangotra R. Comparison of water quality and composition of bioflocs reared in indoor and outdoor conditions. Int Res J Biol Sci. 2018;7(11):1–9.SharmaASinghRBandhanaSangotraR. Comparison of water quality and composition of bioflocs reared in indoor and outdoor conditions. Int Res J Biol Sci.2018;7(11):19.Search in Google Scholar

Timmis K, de Vos WM, Ramos JL, Vlaeminck SE, Prieto A, Danchin A, Verstraete W, de Lorenzo V, Lee SY, Brüssow H, et al. The contribution of microbial biotechnology to sustainable development goals. Microb Biotechnol. 2017 Sep;10(5):984–987. https://doi.org/10.1111/1751-7915.12818TimmisKde VosWMRamosJLVlaeminckSEPrietoADanchinAVerstraeteWde LorenzoVLeeSYBrüssowHThe contribution of microbial biotechnology to sustainable development goals. Microb Biotechnol.2017Sep;10(5):984987. https://doi.org/10.1111/1751-7915.1281810.1111/1751-7915.12818560925028840974Search in Google Scholar

Van Doan H, Hoseinifar SH, Hung TQ, Lumsangkul C, Jaturasitha S, Ehab El-Haroun, Paolucci M. Dietary inclusion of chestnut (Castanea sativa) polyphenols to Nile tilapia reared in biofloc technology: impacts on growth, immunity, and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol. 2020 Oct;105:319–326. https://doi.org/10.1016/j.fsi.2020.07.010Van DoanHHoseinifarSHHungTQLumsangkulCJaturasithaSEhabEl-HarounPaolucciM. Dietary inclusion of chestnut (Castanea sativa) polyphenols to Nile tilapia reared in biofloc technology: impacts on growth, immunity, and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol.2020Oct;105:319326. https://doi.org/10.1016/j.fsi.2020.07.01010.1016/j.fsi.2020.07.01032702475Search in Google Scholar

Verster N. Comparison of growth rates of tilapia species (Oreochromis mossambicus and Oreochromis niloticus) raised in a biofloc and a standard recirculating. Ghent (Belgium): Ghent University; 2017.VersterN. Comparison of growth rates of tilapia species (Oreochromis mossambicus and Oreochromis niloticus) raised in a biofloc and a standard recirculating. Ghent (Belgium): Ghent University; 2017.Search in Google Scholar

Vikaspedia. Biofloc culture [Internet]. Hyderabad (India): Vikaspedia; 2019 [cited 2020 May]. Available from https://vikaspedia. in/agriculture/fisheries/fish-production/culture-fisheries/types-of-aquaculture/bioflocVikaspedia. Biofloc culture [Internet]. Hyderabad (India): Vikaspedia; 2019[cited 2020 May]. Available from https://vikaspedia. in/agriculture/fisheries/fish-production/culture-fisheries/types-of-aquaculture/bioflocSearch in Google Scholar

Vinatea L, Malpartida J, Carbó R, Andree KB, Gisbert E, Estévez A. A comparison of recirculation aquaculture systems versus biofloc technology culture system for on-growing of fry of Tinca tinca (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae). Aquaculture. 2018 Jan;482:155–161. https://doi.org/10.1016/j.aquaculture.2017.09.041VinateaLMalpartidaJCarbóRAndreeKBGisbertEEstévezA. A comparison of recirculation aquaculture systems versus biofloc technology culture system for on-growing of fry of Tinca tinca (Cyprinidae) and fry of grey Mugil cephalus (Mugilidae). Aquaculture.2018Jan;482:155161. https://doi.org/10.1016/j.aquaculture.2017.09.04110.1016/j.aquaculture.2017.09.041Search in Google Scholar

Wei Y, Wang A, Liao S. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation. Aquaculture. 2020 Jan;515:734492. https://doi.org/10.1016/j.aquaculture.2019.734492WeiYWangALiaoS. Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation. Aquaculture.2020Jan;515:734492. https://doi.org/10.1016/j.aquaculture.2019.73449210.1016/j.aquaculture.2019.734492Search in Google Scholar

Xu W, Xu Y, Su H, Hu X, Xu Y, Li Z, Wen G, Cao Y. Production performance, inorganic nitrogen control and bacterial community characteristics in a controlled biofloc-based system for indoor and outdoor super-intensive culture of Litopenaeus vannamei. Aquaculture. 2021 Jan;531:735749. https://doi.org/10.1016/j.aquaculture.2020.735749XuWXuYSuHHuXXuYLiZWenGCaoY. Production performance, inorganic nitrogen control and bacterial community characteristics in a controlled biofloc-based system for indoor and outdoor super-intensive culture of Litopenaeus vannamei. Aquaculture.2021Jan;531:735749. https://doi.org/10.1016/j.aquaculture.2020.73574910.1016/j.aquaculture.2020.735749Search in Google Scholar

Yu Z, Huang ZQ, Du HL, Li HJ, Wu LF. Influence of differential protein levels of feed on growth, copper-induced immune response and oxidative stress of Rhynchocypris lagowski in a biofloc-based system. Aquacult Nutr. 2020 Dec;26(6):2211–2224. https://doi.org/10.1111/anu.13158YuZHuangZQDuHLLiHJWuLF. Influence of differential protein levels of feed on growth, copper-induced immune response and oxidative stress of Rhynchocypris lagowski in a biofloc-based system. Aquacult Nutr.2020Dec;26(6):22112224. https://doi.org/10.1111/anu.1315810.1111/anu.13158Search in Google Scholar

Zhao P, Huang J, Wang XH, Song XL, Yang CH, Zhang XG, Wang GC. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture. 2012 Jul;354–355:97–106. https://doi.org/10.1016/j.aquaculture.2012.03.034ZhaoPHuangJWangXHSongXLYangCHZhangXGWangGC. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicusAquaculture.2012Jul;354–355:97106. https://doi.org/10.1016/j.aquaculture.2012.03.03410.1016/j.aquaculture.2012.03.034Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie