Uneingeschränkter Zugang

Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia


Zitieren

Fig. 1.

Hydrogen production and the concentration of the metabolites during dark fermentation with anaerobic sludge pretreated at 90°C. Substrates: starch (a) and cellulose (b).
Hydrogen production and the concentration of the metabolites during dark fermentation with anaerobic sludge pretreated at 90°C. Substrates: starch (a) and cellulose (b).

Fig. 2.

Hydrogen production and the concentration of the metabolites during dark fermentation of starch with anaerobic sludge pretreated at 100°C.
Hydrogen production and the concentration of the metabolites during dark fermentation of starch with anaerobic sludge pretreated at 100°C.

Fig. 3.

Hydrogen production and the concentration of the metabolites during dark fermentation of cellulose with anaerobic sludge pretreated at 100°C (a). Medium with MgSO4 replaced by MgCl2 (b).
Hydrogen production and the concentration of the metabolites during dark fermentation of cellulose with anaerobic sludge pretreated at 100°C (a). Medium with MgSO4 replaced by MgCl2 (b).

Fig. 4.

Cumulative hydrogen production during repeated fed-batch dark fermentation of cellulose. AS1 – anaerobic sludge 1, AS2 – anaerobic sludge 2, ES – bacteria culture enriched on starch. Feeding days for each process: AS1 – pH 6.0 (11, 13, 16, 19, 23, 27, 31, 35, 39, 43, 47); AS2 – pH 6.0 (11, 13, 15, 18); ES – pH 6.0 (19, 23, 27, 31, 35, 39, 43, 47).
Cumulative hydrogen production during repeated fed-batch dark fermentation of cellulose. AS1 – anaerobic sludge 1, AS2 – anaerobic sludge 2, ES – bacteria culture enriched on starch. Feeding days for each process: AS1 – pH 6.0 (11, 13, 16, 19, 23, 27, 31, 35, 39, 43, 47); AS2 – pH 6.0 (11, 13, 15, 18); ES – pH 6.0 (19, 23, 27, 31, 35, 39, 43, 47).

Fig. 5.

Changes in metabolites concentration during repeated fed-batch dark fermentation of cellulose. Concentrations of metabolites before and after feeding are presented. Feeding days for each process: AS1 – pH 6.0 (11, 13, 16, 19, 23, 27, 31, 35, 39, 43, 47); AS2 – pH 6.0 (11, 13, 15, 18) ; ES – pH 6.0 (19, 23, 27, 31, 35, 39, 43, 47).
Changes in metabolites concentration during repeated fed-batch dark fermentation of cellulose. Concentrations of metabolites before and after feeding are presented. Feeding days for each process: AS1 – pH 6.0 (11, 13, 16, 19, 23, 27, 31, 35, 39, 43, 47); AS2 – pH 6.0 (11, 13, 15, 18) ; ES – pH 6.0 (19, 23, 27, 31, 35, 39, 43, 47).

The main anaerobic bioreactions during hydrogen fermentation form glucose with corresponding standard Gibbs free energies.

ΔG° [kJ] Eq. No.
Reaction
Acetate: C2H12O6 + 2H2O = > 2CH3COOH + 4H2 + 2CO2 −206 1
Butyrate: C6H12O6 = > CH3CH2CH2COOH + 2H2 + 2CO2 −254 2
Lactate: C6H12O6 = > 2CH3CHOHCOOH + H+ −225.4 3
Ethanol: C6H12O6 = > 2CH3CH2OH + 2CO2 −164.8 4
Hydrogen consuming reactions
Homoacetogenesis: 4H2 + 2CO2 = > CH3COOH + 2H2O −104 5
Methanogenic reactions: 4H2 + CO2 = > CH4 + 2H2O −135 6
Sulfidogenic reactions: SO4 2- + 4H2 + H+ = > HS- + 4H2O −152.2 7
Propionate production: C6H12O6 + 2H2 = > 2CH3CH2COOH + 2H2O −279.4 8

Comparison of the hydrogen production processes using untreated cellulosic material at mesophilic conditions.

Inoculum Inoculum pretreatment Cellulosic substrate Conc. [g/l] Temp. [°C] pH initial (final) SRE [%] Culture conditions Main metabolites HPR [ml/l-h] H2 yield [mol H2/molhexose Ref.
Sewage sludge digester No pretreatment Cellulose 5.0 37 5.90 (5.90) 61 Continuous 0.3 0.10 Butyrate > acetate > valerate (Gadow et al. 2012)
Anaerobic digester sludge 70°C (30 min) α-Cellulose 13.5a 37 5.5 (5.1) NR Batch 5 0.13 Propionate > butyrate > acetate (Gupta et al. 2014)
Clostridium lentocellum No pretreatment Carboxymethyl cellulose 5 37 7.0 49 Batch 50.4 5.42d Acetate > butyrate > ethanol (Zhang et al. 2019)
Cow dung compost No pretreatment Microcrystalline cellulose 10 37 6.8 (4.2) 55 Batch 33 2.09 Acetate > butyrate > lactate = ethanol (Ren et al. 2010)
Anaerobic digester sludge No pretreatment Carboxymethyl cellulose 4 30 7.0 (NR) NR Batch NR 1.72d Butyrate > acetate > ethanol > lactate (Ho et al. 2012)
Anaerobic digester sludge 100°C (20 min) Microcrystalline cellulose 5 32 6.0 (6.0) 60 Repeated fed-batch 2.3 0.63–1.04 Acetate > butyrate > propionate This study
Anaerobic digester sludge 100°C (20 min) Microcrystalline cellulose 25 32 6.5 (5.7) 82 Batch 3.94 0.97 Acetate > ethanol This study
Clostridum sartagoforme FZll No pretreatment Microcrystalline cellulose 10 35 7.0 (NR) 83.2 Batch 7.5c 0.53 NR (Zhang et al. 2015)
Clostridium acetobutylicum X9 + Ethanoigenens harbinense B2 No pretreatment Microcrystalline cellulose 12 37–40 6.0 (NR) 86 Batch NR 1.7 Ethanol > acetate > butyrate (Bao et al. 2016)
Clostridium termitidis + Clostridium beijerinckii No pretreatment Cellulose 2 37 7.2 93 Batch 2.17 1.92 Acetate > ethanol >lactate (Gomez-Flores et al. 2017)

Hydrogen and CO2 production, hydrogen yield, an average hydrogen production rate (HPR), substrate removal efficiency (SRE), and final pH in repeated batch processes from starch (S) and cellulose (C) with inoculum pretreated at 90 or 100°C.

Process Cycle no. Final H2 production [l/lmedium] Final CO2 production [l/lmedium] H2 yield [mol H2/molhexose] Average HPR [ml H2/l/h] SRE [%] Final pH Carbon recovered in metabolites [%]
S – 90°C 1 0 0.478 ± 0.056 0 0 100 5.70 ± 0.12 81
2 0 0.484 ± 0.032 0 12.2 ± 1.1 100 5.16 ± 0.14 74
C – 90°C 1 0 0.42 ± 0.047 0 0.2 ± 0.1 95 ± 3 5.50 ± 0.10 75
2 0 0.65 ± 0.038 0 0.5 ± 0.1 94 ± 3 5.71 ± 0.07 87
S – 100°C 1 0.003 ± 0.001 0.607 ± 0.040 0.01 ± 0.001 4.4 ± 0.3 100 4.60 ± 0.11 81
2 1.175 ± 0.115 0.917 ± 0.079 1.60 ± 0.16 21.8 ± 2.0 100 5.05 ± 0.08 58
3 1.121 ± 0.097 0.961 ± 0.050 1.53 ± 0.13 14.9 ± 1.2 100 5.90 ± 0.05 51
4 1.167 ± 0.111 0.775 ± 0.074 1.59 ± 0.15 24.7 ± 2.2 100 5.05 ± 0.05 52
5 1.298 ± 0.140 0.838 ± 0.086 1.77 ± 0.19 26.0 ± 1.9 100 5.05 ± 0.04 48
6 1.200 ± 0.098 0.771 ± 0.059 1.63 ± 0.13 15.8 ± 1.2 100 5.05 ± 0.07 46
C – 100°C 1 0.093 ± 0.006 0.549 ± 0.061 0.14 ± 0.01 0.6 ± 0.1 90 ± 2 5.30 ± 0.12 75
2 0.314 ± 0.019 0.892 ± 0.056 0.48 ± 0.03 0.5 ± 0.1 89 ± 1 5.95 ± 0.12 62
3 0.007 ± 0.001 0.828 ± 0.097 0.01 ± 0.001 0.5 ± 0.1 95 ± 2 5.63 ± 0.11 85
4 0.201 ± 0.023 0.456 ± 0.035 0.33 ± 0.04 0.4 ± 0.1 84 ± 3 5.40 ± 0.07 59
5 0.253 ± 0.028 0.415 ± 0.047 0.39 ± 0.04 0.3 ± 0.1 89 ± 4 5.52 ± 0.08 50
C – 100°C (without SO/4 2-) 1 0.585 ± 0.033 0.532 ± 0.042 0.97 ± 0.05 2.3 ± 0.2 82 ± 2 5.70 ± 0.04 56
2 0.410 ± 0.041 0.379 ± 0.028 0.71 ± 0.07 2.6 ± 0.3 79 ± 1 4.90 ± 0.05 39
3 0.485 ± 0.026 0.323 ± 0.022 0.93 ± 0.05 1.3 ± 0.2 71 ± 3 4.95 ± 0.09 41
4 0.135 ± 0.014 0.337 ± 0.023 0.23 ± 0.02 1.3 ± 0.2 80 ± 2 5.02 ± 0.07 54

Hydrogen yield in repeated fed-batch processes of hydrogen production from cellulose.

Inoculum Hydrogen yield [mol H2/molhexose] after
1 feeding cycle 2 feeding cycle 5 feeding cycle 9 feeding cycle
AS1 – pH 6.0 1.04 0.83 0.75 0.63
AS2 – pH 6.0 0.67 0.75 0.30
ES – pH 6.0 0.79 0.67 0.39 0.27
eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie