Zitieren

Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015 Jun 18;3:e1029. https://doi.org/10.7717/peerj.1029AsnicarFWeingartGTickleTLHuttenhowerCSegataN. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015Jun 18;3:e1029. https://doi.org/10.7717/peerj.102910.7717/peerj.1029447613226157614Search in Google Scholar

Bosch TCG. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol. 2013 Sep 08;67(1):499–518. https://doi.org/10.1146/annurev-micro-092412-155626BoschTCG. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol. 2013Sep 08;67(1):499518. https://doi.org/10.1146/annurev-micro-092412-15562610.1146/annurev-micro-092412-15562623808329Search in Google Scholar

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010 May;7(5):335–336. https://doi.org/10.1038/nmeth.f.303CaporasoJGKuczynskiJStombaughJBittingerKBushmanFDCostelloEKFiererNPeñaAGGoodrichJKGordonJI, QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010May;7(5):335336. https://doi.org/10.1038/nmeth.f.30310.1038/nmeth.f.303315657320383131Search in Google Scholar

Cleary DFR, Becking LE, Polónia ARM, Freitas RM, Gomes NCM. Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes. FEMS Microbiol Ecol. 2016 May 01;92(5):fiw064. https://doi.org/10.1093/femsec/fiw064ClearyDFRBeckingLEPolóniaARMFreitasRMGomesNCM. Jellyfish-associated bacterial communities and bacterioplankton in Indonesian Marine lakes. FEMS Microbiol Ecol.2016May 01;92(5):fiw064. https://doi.org/10.1093/femsec/fiw06410.1093/femsec/fiw06427004797Search in Google Scholar

Cortés-Lara S, Urdiain M, Mora-Ruiz M, Prieto L, Rosselló-Móra R. Prokaryotic microbiota in the digestive cavity of the jellyfish Cotylorhiza tuberculata. Syst Appl Microbiol. 2015 Oct;38(7): 494–500. https://doi.org/10.1016/j.syapm.2015.07.001Cortés-LaraSUrdiainMMora-RuizMPrietoLRosselló-MóraR. Prokaryotic microbiota in the digestive cavity of the jellyfish Cotylorhiza tuberculata. Syst Appl Microbiol. 2015Oct;38(7): 494500. https://doi.org/10.1016/j.syapm.2015.07.00110.1016/j.syapm.2015.07.00126219225Search in Google Scholar

Daley MC, Urban-Rich J, Moisander PH. Bacterial associations with the hydromedusa Nemopsis bachei and scyphomedusa Aurelia aurita from the North Atlantic Ocean. Mar Biol Res. 2016 Nov 25; 12 (10):1088–1100. https://doi.org/10.1080/17451000.2016.1228974DaleyMCUrban-RichJMoisanderPH. Bacterial associations with the hydromedusa Nemopsis bachei and scyphomedusa Aurelia aurita from the North Atlantic Ocean. Mar Biol Res.2016Nov 25; 12 (10):10881100. https://doi.org/10.1080/17451000.2016.122897410.1080/17451000.2016.1228974Search in Google Scholar

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006 Jul 01;72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05DeSantisTZHugenholtzPLarsenNRojasMBrodieELKellerKHuberTDaleviDHuPAndersenGL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006Jul 01;72(7):50695072. https://doi.org/10.1128/AEM.03006-0510.1128/AEM.03006-05148931116820507Search in Google Scholar

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010 Oct 1;26(19):2460–2461. https://doi.org/10.1093/bioinformatics/btq461EdgarRC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010Oct 1;26(19):24602461. https://doi.org/10.1093/bioinformatics/btq46110.1093/bioinformatics/btq46120709691Search in Google Scholar

Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 2005 Aug 26;309(5739):1387–1390. https://doi.org/10.1126/science.1112665GansJWolinskyMDunbarJ. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 2005Aug 26;309(5739):13871390. https://doi.org/10.1126/science.111266510.1126/science.111266516123304Search in Google Scholar

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013 Sep;31(9):814–821. https://doi.org/10.1038/nbt.2676LangilleMGIZaneveldJCaporasoJGMcDonaldDKnightsDReyesJAClementeJCBurkepileDEVega ThurberRLKnightR, Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013Sep;31(9):814821. https://doi.org/10.1038/nbt.267610.1038/nbt.2676381912123975157Search in Google Scholar

Lee MD, Kling JD, Araya R, Ceh J. Jellyfish life stages shape associated microbial communities, while a core microbiome is maintained across all. Front Microbiol. 2018 Jul 12;9:1534. https://doi.org/10.3389/fmicb.2018.01534LeeMDKlingJDArayaRCehJ. Jellyfish life stages shape associated microbial communities, while a core microbiome is maintained across all. Front Microbiol. 2018Jul 12;9:1534. https://doi.org/10.3389/fmicb.2018.0153410.3389/fmicb.2018.01534605214730050517Search in Google Scholar

Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 01; 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507MagočTSalzbergSL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011Nov 01; 27(21):29572963. https://doi.org/10.1093/bioinformatics/btr50710.1093/bioinformatics/btr507319857321903629Search in Google Scholar

Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, et al. The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA. 2006 Aug 29;103(35):13126–13131. https://doi.org/10.1073/pnas.0605709103MulkidjanianAYKooninEVMakarovaKSMekhedovSLSorokinAWolfYIDufresneAPartenskyFBurdHKaznadzeyD, The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA. 2006Aug 29;103(35):1312613131. https://doi.org/10.1073/pnas.060570910310.1073/pnas.0605709103155189916924101Search in Google Scholar

Paharik AE, Horswill AR. The staphylococcal biofilm: Adhesins, regulation, and host response. Microbiol Spectr. 2016 Apr; 4(2): 126–135. https://doi.org/10.1128/microbiolspec.VMBF-0022-2015PaharikAEHorswillAR. The staphylococcal biofilm: Adhesins, regulation, and host response. Microbiol Spectr. 2016Apr; 4(2): 126135. https://doi.org/10.1128/microbiolspec.VMBF-0022-201510.1128/microbiolspec.VMBF-0022-2015488715227227309Search in Google Scholar

Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007 Nov;62(2):142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.xRametteA. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol.2007Nov;62(2):142160. https://doi.org/10.1111/j.1574-6941.2007.00375.x10.1111/j.1574-6941.2007.00375.x212114117892477Search in Google Scholar

Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007 May;5(5):355–362. https://doi.org/10.1038/nrmicro1635RosenbergEKorenOReshefLEfronyRZilber-RosenbergI. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007May;5(5):355362. https://doi.org/10.1038/nrmicro163510.1038/nrmicro163517384666Search in Google Scholar

Schuergers N, Mullineaux CW, Wilde A. Cyanobacteria in motion. Curr Opin Plant Biol. 2017 Jun;37:109–115. https://doi.org/10.1016/j.pbi.2017.03.018SchuergersNMullineauxCWWildeA. Cyanobacteria in motion. Curr Opin Plant Biol.2017Jun;37:109115. https://doi.org/10.1016/j.pbi.2017.03.01810.1016/j.pbi.2017.03.01828472718Search in Google Scholar

Schuett C, Doepke H. Endobiotic bacteria and their pathogenic potential in cnidarian tentacles. Helgol Mar Res. 2010 Sep;64(3): 205–212. https://doi.org/10.1007/s10152-009-0179-2SchuettCDoepkeH. Endobiotic bacteria and their pathogenic potential in cnidarian tentacles. Helgol Mar Res.2010Sep;64(3): 205212. https://doi.org/10.1007/s10152-009-0179-210.1007/s10152-009-0179-2Search in Google Scholar

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60SegataNIzardJWaldronLGeversDMiropolskyLGarrettWSHuttenhowerC.Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r6010.1186/gb-2011-12-6-r60321884821702898Search in Google Scholar

Sevellec M, Derome N, Bernatchez L. Holobionts and ecological speciation: the intestinal microbiota of lake whitefish species pairs. Microbiome. 2018 Dec;6(1):47. https://doi.org/10.1186/s40168-018-0427-2SevellecMDeromeNBernatchezL. Holobionts and ecological speciation: the intestinal microbiota of lake whitefish species pairs. Microbiome. 2018Dec;6(1):47. https://doi.org/10.1186/s40168-018-0427-210.1186/s40168-018-0427-2585309029540239Search in Google Scholar

Shanmugam SG, Magbanua ZV, Williams MA, Jangid K, Whitman WB, Peterson DG, Kingery WL. Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems. Microb Ecol. 2017 Apr;73(3):556–569. https://doi.org/10.1007/s00248-016-0884-8ShanmugamSGMagbanuaZVWilliamsMAJangidKWhitmanWBPetersonDGKingeryWL. Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems. Microb Ecol.2017Apr;73(3):556569. https://doi.org/10.1007/s00248-016-0884-810.1007/s00248-016-0884-827889811Search in Google Scholar

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 Nov 01;13(11):2498–2504. https://doi.org/10.1101/gr.1239303ShannonPMarkielAOzierOBaligaNSWangJTRamageDAminNSchwikowskiBIdekerT. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.2003Nov 01;13(11):24982504. https://doi.org/10.1101/gr.123930310.1101/gr.123930340376914597658Search in Google Scholar

Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016 Mar;10(3):644–654. https://doi.org/10.1038/ismej.2015.140StephensWZBurnsARStagamanKWongSRawlsJFGuilleminKBohannanBJM. The composition of the zebrafish intestinal microbial community varies across development. ISME J.2016Mar;10(3):644654. https://doi.org/10.1038/ismej.2015.14010.1038/ismej.2015.140481768726339860Search in Google Scholar

Tinta T, Kogovšek T, Klun K, Malej A, Herndl GJ, Turk V. Jelly-fish-associated microbiome in the marine environment: exploring its biotechnological potential. Mar Drugs. 2019 Feb 01; 17(2):94. https://doi.org/10.3390/md17020094TintaTKogovšekTKlunKMalejAHerndlGJTurkV. Jelly-fish-associated microbiome in the marine environment: exploring its biotechnological potential. Mar Drugs. 2019Feb 01; 17(2):94. https://doi.org/10.3390/md1702009410.3390/md17020094641032130717239Search in Google Scholar

van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts – recent advances and perspectives. Microbiome. 2018 Dec;6(1):64. https://doi.org/10.1186/s40168-018-0431-6van de WaterJAJMAllemandDFerrier-PagèsC. Host-microbe interactions in octocoral holobionts – recent advances and perspectives. Microbiome. 2018Dec;6(1):64. https://doi.org/10.1186/s40168-018-0431-610.1186/s40168-018-0431-6588002129609655Search in Google Scholar

Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S, Richter M, Antón J, Avian M, Amann R, Konstantinidis KT, et al. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environ Microbiol. 2017 Aug; 19(8):3039–3058. https://doi.org/10.1111/1462-2920.13763ViverTOrellanaLHHattJKUrdiainMDíazSRichterMAntónJAvianMAmannRKonstantinidisKT, The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa. Environ Microbiol. 2017Aug; 19(8):30393058. https://doi.org/10.1111/1462-2920.1376310.1111/1462-2920.1376328419691Search in Google Scholar

Weiland-Bräuer N, Neulinger SC, Pinnow N, Künzel S, Baines JF, Schmitz RA. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl Environ Microbiol. 2015 Sep 01;81(17):6038–6052. https://doi.org/10.1128/AEM.01601-15Weiland-BräuerNNeulingerSCPinnowNKünzelSBainesJFSchmitzRA. Composition of bacterial communities associated with Aurelia aurita changes with compartment, life stage, and population. Appl Environ Microbiol. 2015Sep 01;81(17):60386052. https://doi.org/10.1128/AEM.01601-1510.1128/AEM.01601-15455124626116680Search in Google Scholar

White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLOS Comput Biol. 2009 Apr 10;5(4):e1000352. https://doi.org/10.1371/journal.pcbi.1000352WhiteJRNagarajanNPopM. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLOS Comput Biol.2009Apr 10;5(4):e1000352. https://doi.org/10.1371/journal.pcbi.100035210.1371/journal.pcbi.1000352266101819360128Search in Google Scholar

Yin M, Liu D, Xu F, Xiao L, Wang Q, Wang B, Chang Y, Zheng J, Tao X, Liu G, et al. A specific antimicrobial protein CAP-1 from Pseudomonas sp. isolated from the jellyfish Cyanea capillata. Int J Biol Macromol. 2016 Jan;82:488–496. https://doi.org/10.1016/j.ijbiomac.2015.10.056YinMLiuDXuFXiaoLWangQWangBChangYZhengJTaoXLiuG, A specific antimicrobial protein CAP-1 from Pseudomonas sp. isolated from the jellyfish Cyanea capillataInt J Biol Macromol. 2016Jan;82:488496. https://doi.org/10.1016/j.ijbiomac.2015.10.05610.1016/j.ijbiomac.2015.10.05626529191Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie