Uneingeschränkter Zugang

An Investigation of Petrol Metabolizing Bacteria Isolated from Contaminated Soil Samples Collected from Various Fuel Stations


Zitieren

Abou-Shanab RAI, Eraky M, Haddad AM, Abdel-Gaffar ARB, Salem AM. Characterization of crude oil degrading bacteria isolated from contaminated soils surrounding gas stations. Bull Environ Contam Toxicol. 2016 Nov;97(5):684–688. doi:10.1007/s00128-016-1924-2 MedlineAbou-ShanabRAIErakyMHaddadAMAbdel-GaffarARBSalemAMCharacterization of crude oil degrading bacteria isolated from contaminated soils surrounding gas stations. Bull Environ Contam Toxicol. 2016Nov;97(5):684688. doi:10.1007/s00128-016-1924-2Medline27655077Open DOISearch in Google Scholar

Asiedu NY, Asiedu YA, Bediako PCK. Isolation, identification and characterization of some petroleum metabolizers from soils contaminated with petroluem oils in Kumasi Metropolis-Ghana. J Microbiol Res. 2014;4:117–124. doi:10.5923/j.microbiology.20140402.12AsieduNYAsieduYABediakoPCKIsolation, identification and characterization of some petroleum metabolizers from soils contaminated with petroluem oils in Kumasi Metropolis-Ghana. J Microbiol Res. 2014;4:117124. doi:10.5923/j.microbiology.20140402.12Open DOISearch in Google Scholar

Avanzi IR, Gracioso LH, Baltazar MPG, Karolski B, Perpetuo EA, Nascimento CAO. Aerobic biodegradation of gasoline compounds by bacteria isolated from a hydrocarbon-contaminated soil. Environ Eng Sci. 2015 Dec;32(12):990–997. doi:10.1089/ees.2015.0122AvanziIRGraciosoLHBaltazarMPGKarolskiBPerpetuoEANascimentoCAOAerobic biodegradation of gasoline compounds by bacteria isolated from a hydrocarbon-contaminated soil. Environ Eng Sci. 2015Dec;32(12):990997. doi:10.1089/ees.2015.0122Open DOISearch in Google Scholar

Bacosa HP, Erdner DL, Rosenheim BE, Shetty P, Seitz KW, Baker BJ, Liu Z. Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil. ISME J. 2018 Oct;12(10):2532–2543. doi:10.1038/s41396-018-0190-1 MedlineBacosaHPErdnerDLRosenheimBEShettyPSeitzKWBakerBJLiuZHydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil. ISME J. 2018Oct;12(10):25322543. doi:10.1038/s41396-018-0190-1Medline615497129950702Open DOISearch in Google Scholar

Bagga J, Pandey M, Pandey V. Isolation, characterization and identification of three petroleum tolerant and degrading bacteria (Micrococcus, Staphylococcus and Pseudomonas spp.) from petroleum oil contaminated soil. Int J Innov Res Sci Eng Technol. 2015; 4(10):9993–10005. doi:10.15680/IJIRSET.2015.0410098BaggaJPandeyMPandeyVIsolation, characterization and identification of three petroleum tolerant and degrading bacteria (Micrococcus, Staphylococcus and Pseudomonas spp.) from petroleum oil contaminated soil. Int J Innov Res Sci Eng Technol. 2015; 4(10):999310005. doi:10.15680/IJIRSET.2015.0410098Open DOISearch in Google Scholar

Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol. 2012 May;112:83–90. doi:10.1016/j.biortech.2012.02.059 MedlineBalachandranCDuraipandiyanVBalakrishnaKIgnacimuthuSPetroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol. 2012May;112:8390. doi:10.1016/j.biortech.2012.02.059Medline22425516Open DOISearch in Google Scholar

Battikhi MN. Bioremediation of petroleum sludge. J Microbiol Exp. 2014;1:1–3. 1doi:10.15406/jmen.2014.01.00011BattikhiMNBioremediation of petroleum sludge. J Microbiol Exp. 2014;1:13. 1doi:10.15406/jmen.2014.01.00011Open DOISearch in Google Scholar

Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr 01;45 4_ts:493–496. doi:10.1093/ajcp/45.4_ts.493 MedlineBauerAWKirbyWMMSherrisJCTurckMAntibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966Apr 01;454_ts:493496. doi:10.1093/ajcp/45.4_ts.493MedlineOpen DOISearch in Google Scholar

Chakraborty S, Mukherji S, Mukherji S. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf B Bio-interfaces. 2010 Jun;78(1):101–108. doi:10.1016/j.colsurfb.2010.02.019 MedlineChakrabortySMukherjiSMukherjiSSurface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf B Bio-interfaces. 2010Jun;78(1):101108. doi:10.1016/j.colsurfb.2010.02.019Medline20236810Open DOISearch in Google Scholar

Chen W, Li J, Sun X, Min J, Hu X. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. Int Biodeterior Biodegradation. 2017 Mar;118:110–118. doi:10.1016/j.ibiod.2017.01.029ChenWLiJSunXMinJHuXHigh efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species CN-3. Int Biodeterior Biodegradation. 2017Mar;118:110118. doi:10.1016/j.ibiod.2017.01.029Open DOISearch in Google Scholar

Copley SD. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol. 2009 Aug;5(8):559–566. doi:10.1038/nchembio.197 MedlineCopleySDEvolution of efficient pathways for degradation of anthropogenic chemicals. Nat Chem Biol. 2009Aug;5(8):559566. doi:10.1038/nchembio.197Medline286735019620997Open DOISearch in Google Scholar

Cruz LPS, Alve LP, Santos AVS, Esteves MB, Gomes ÍVS, Nunes LSS. Assessment of BTEX concentrations in air ambient of gas stations using passive sampling and the health risks for workers. J Environ Prot. 2017;08(01):12–25. doi:10.4236/jep.2017.81002CruzLPSAlveLPSantosAVSEstevesMBGomesÍVSNunesLSSAssessment of BTEX concentrations in air ambient of gas stations using passive sampling and the health risks for workers. J Environ Prot. 2017;08(01):1225. doi:10.4236/jep.2017.81002Open DOISearch in Google Scholar

Ekpenyong C, Asuquo A. Recent advances in occupational and environmental health hazards of workers exposed to gasoline compounds. Int J Occup Med Environ Health. 2017 Feb 1;30(1):1–26. doi:10.13075/ijomeh.1896.00800 MedlineEkpenyongCAsuquoARecent advances in occupational and environmental health hazards of workers exposed to gasoline compounds. Int J Occup Med Environ Health. 2017Feb 1;30(1):126. doi:10.13075/ijomeh.1896.00800Medline28220904Open DOISearch in Google Scholar

Eskandari S, Hoodaji M, Tahmourespour A, Abdollahi A, Baghi T, Eslamian S, Ostad-Ali-Askari K. Bioremediation of polycyclic aromatic hydrocarbons by Bacillus licheniformis ATHE9 and Bacillus mojavensis ATHE13 as newly strains isolated from oil-contaminated soil. J Geogr Environ Earth Sci Int. 2017 Jan 10; 11(2):1–11. doi:10.9734/JGEESI/2017/35447EskandariSHoodajiMTahmourespourAAbdollahiABaghiTEslamianSOstad-Ali-AskariKBioremediation of polycyclic aromatic hydrocarbons by Bacillus licheniformis ATHE9 and Bacillus mojavensis ATHE13 as newly strains isolated from oil-contaminated soil. J Geogr Environ Earth Sci Int. 2017Jan 10; 11(2):111. doi:10.9734/JGEESI/2017/35447Open DOISearch in Google Scholar

Fida TT, Moreno-Forero SK, Breugelmans P, Heipieper HJ, Röling WFM, Springael D. Physiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environ Sci Technol. 2017 Feb 07;51(3):1570–1579. doi:10.1021/acs.est.6b03822 MedlineFidaTTMoreno-ForeroSKBreugelmansPHeipieperHJRölingWFMSpringaelDPhysiological and transcriptome response of the polycyclic aromatic hydrocarbon degrading Novosphingobium sp. LH128 after inoculation in soil. Environ Sci Technol. 2017Feb 07;51(3):15701579. doi:10.1021/acs.est.6b03822Medline28040887Open DOISearch in Google Scholar

Guermouche M’rassi A, Bensalah F, Gury J, Duran R. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int. 2015 Oct;22(20):15332–15346. doi:10.1007/s11356-015-4343-8 MedlineGuermouche M’rassiABensalahFGuryJDuranRIsolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int. 2015Oct;22(20):1533215346. doi:10.1007/s11356-015-4343-8Medline25813636Open DOISearch in Google Scholar

Guerra F, Attia M, Whitehead D, Alexis F. Nanotechnology for environmental remediation: materials and applications. Molecules. 2018 Jul 18;23(7):1760. doi:10.3390/molecules23071760 MedlineGuerraFAttiaMWhiteheadDAlexisFNanotechnology for environmental remediation: materials and applications. Molecules. 2018Jul 18;23(7):1760. doi:10.3390/molecules23071760Medline610049130021974Open DOISearch in Google Scholar

Gurav R, Lyu H, Ma J, Tang J, Liu Q, Zhang H. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ Sci Pollut Res Int. 2017 Apr;24(12):11392–11403. doi:10.1007/s11356-017-8446-2 MedlineGuravRLyuHMaJTangJLiuQZhangHDegradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ Sci Pollut Res Int. 2017Apr;24(12):1139211403. doi:10.1007/s11356-017-8446-2Medline28315056Open DOISearch in Google Scholar

Händel N, Schuurmans JM, Brul S, ter Kuile BH. Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob Agents Chemother. 2013 Aug; 57(8): 3752–3762. doi:10.1128/AAC.02096-12 MedlineHändelNSchuurmansJMBrulSter KuileBHCompensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob Agents Chemother. 2013 Aug; 57(8): 37523762. doi:10.1128/AAC.02096-12Medline371977423716056Open DOISearch in Google Scholar

Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices. 2014;2014:1–18. doi:10.1155/2014/359316 MedlineIravaniSBacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices. 2014;2014:118. doi:10.1155/2014/359316Medline489756527355054Open DOISearch in Google Scholar

Jain PK, Gupta VK, Gaur RK, Lowry M, Jaroli DP, Chauhan UK. Bioremediation of petroleum oil contaminated soil and water. Res J Envir Toxicol. 2011;5:1–26. doi:10.3923/rjet.2011.1.26JainPKGuptaVKGaurRKLowryMJaroliDPChauhanUKBioremediation of petroleum oil contaminated soil and water. Res J Envir Toxicol. 2011;5:126. doi:10.3923/rjet.2011.1.26Open DOISearch in Google Scholar

Lu S, Wang H, Yao Z. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J Environ Sci (China). 2006a Sep;18(5):969–972. doi:10.1016/S1001-0742(06)60023-5 MedlineLuSWangHYaoZIsolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J Environ Sci (China). 2006aSep;18(5):969972. doi:10.1016/S1001-0742(06)60023-5MedlineOpen DOISearch in Google Scholar

Lu S, Wang H, Yao Z. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J Environ Sci (China). 2006b Sep;18(5):969–972. doi:10.1016/S1001-0742(06)60023-5 MedlineLuSWangHYaoZIsolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J Environ Sci (China). 2006bSep;18(5):969972. doi:10.1016/S1001-0742(06)60023-5MedlineOpen DOISearch in Google Scholar

Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York (USA): Cold Spring Harbor; 1982.ManiatisTFritschEFSambrookJMolecular cloning: a laboratory manual. New York (USA): Cold Spring Harbor; 1982.Search in Google Scholar

Marchand C, St-Arnaud M, Hogland W, Bell TH, Hijri M. Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegradation. 2017 Jan;116:48–57. doi:10.1016/j.ibiod.2016.09.030MarchandCSt-ArnaudMHoglandWBellTHHijriMPetroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegradation. 2017Jan;116:4857. doi:10.1016/j.ibiod.2016.09.030Open DOISearch in Google Scholar

Marin MM, Smits THM, van Beilen JB, Rojo F. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol. 2001 Jul 15;183(14):4202–4209. doi:10.1128/JB.183.14.4202-4209.2001 MedlineMarinMMSmitsTHMvan BeilenJBRojoFThe alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol. 2001Jul 15;183(14):42024209. doi:10.1128/JB.183.14.4202-4209.2001Medline9530911418560Open DOISearch in Google Scholar

Mnif S, Chamkha M, Labat M, Sayadi S. Simultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol. 2011 Sep;111(3):525–536. doi:10.1111/j.1365-2672.2011.05071.x MedlineMnifSChamkhaMLabatMSayadiSSimultaneous hydrocarbon biodegradation and biosurfactant production by oilfield-selected bacteria. J Appl Microbiol. 2011Sep;111(3):525536. doi:10.1111/j.1365-2672.2011.05071.xMedline21668593Open DOISearch in Google Scholar

Morlett-Chávez JA, Ascacio-Martínez JÁ, Haskins WE, Acuña-Askar K, Barrera-Saldaña HA. Gene expression during BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and a Pseudomonas putida strain (HM346961) isolated from it. Pol J Microbiol. 2017 Jun 28;66(2):189–199. doi:10.5604/01.3001.0010.7836 MedlineMorlett-ChávezJAAscacio-MartínezHaskinsWEAcuña-AskarKBarrera-SaldañaHAGene expression during BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and a Pseudomonas putida strain (HM346961) isolated from it. Pol J Microbiol. 2017Jun 28;66(2):189199. doi:10.5604/01.3001.0010.7836Medline28735314Open DOISearch in Google Scholar

Mujahid TY, Wahab A, Padhiar SH, Subhan SA, Baloch MN, Pirzada ZA. Isolation and characterization of hydrocarbon degrading bacteria from petrol contaminated soil. J Basic Appl Sci. 2015 Mar 05;11:223–231. doi:10.6000/1927-5129.2015.11.32MujahidTYWahabAPadhiarSHSubhanSABalochMNPirzadaZAIsolation and characterization of hydrocarbon degrading bacteria from petrol contaminated soil. J Basic Appl Sci. 2015Mar 05;11:223231. doi:10.6000/1927-5129.2015.11.32Open DOISearch in Google Scholar

Nalini P, Ellaiah P, Prabhakar T, Girijasankar G. Microbial alkaline phosphatases in bioprocessing. Int J Curr Microbiol Appl Sci. 2015;4:384–396.NaliniPEllaiahPPrabhakarTGirijasankarGMicrobial alkaline phosphatases in bioprocessing. Int J Curr Microbiol Appl Sci. 2015;4:384396.Search in Google Scholar

Ozyurek SB, Bilkay IS. Determination of petroleum biodegradation by bacteria isolated from drilling fluid, waste mud pit and crude oil. Turk J Biochem. 2017;42:609–616.OzyurekSBBilkayISDetermination of petroleum biodegradation by bacteria isolated from drilling fluid, waste mud pit and crude oil. Turk J Biochem. 2017;42:609616.Search in Google Scholar

Patowary K, Patowary R, Kalita MC, Deka S. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol. 2016 Jul 14;7:1092. doi:10.3389/fmicb.2016.01092 MedlinePatowaryKPatowaryRKalitaMCDekaSDevelopment of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol. 2016Jul 14;7:1092. doi:10.3389/fmicb.2016.01092Medline494393827471499Open DOISearch in Google Scholar

Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. 2017 Dec 23;15(1):16. doi:10.3390/ijerph15010016 MedlinePereraFPollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. 2017Dec 23;15(1):16. doi:10.3390/ijerph15010016Medline580011629295510Open DOISearch in Google Scholar

Rani V, Mohanram S, Tiwari R, Nain L, Arora A. Beta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. J Bioprocess Biotech. 2014;5:2.RaniVMohanramSTiwariRNainLAroraABeta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. J Bioprocess Biotech. 2014;5:2.Search in Google Scholar

Rappaport SM, Selvin S, Waters MA. Exposures to hydrocarbon components of gasoline in the petroleum industry. Applied Industrial Hygiene. 1987 Jul;2(4):148–154. doi:10.1080/08828032.1987.10390542RappaportSMSelvinSWatersMAExposures to hydrocarbon components of gasoline in the petroleum industry. Applied Industrial Hygiene. 1987Jul;2(4):148154. doi:10.1080/08828032.1987.10390542Open DOISearch in Google Scholar

Ridgway HF, Safarik J, Phipps D, Carl P, Clark D. Identification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl Environ Microbiol. 1990 Nov; 56(11):3565–3575 Medline.RidgwayHFSafarikJPhippsDCarlPClarkDIdentification and catabolic activity of well-derived gasoline-degrading bacteria from a contaminated aquifer. Appl Environ Microbiol. 1990 Nov; 56(11):35653575 Medline.10.1128/aem.56.11.3565-3575.1990Search in Google Scholar

Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep (Amst). 2017 Sep;15:33–40. doi:10.1016/j.btre.2017.02.006 MedlineSaravananCRajeshRKaviarasanTMuthukumarKKavitakeDShettyPHSynthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep (Amst). 2017Sep;15:3340. doi:10.1016/j.btre.2017.02.006MedlineOpen DOISearch in Google Scholar

Sarkar P, Roy A, Pal S, Mohapatra B, Kazy SK, Maiti MK, Sar P. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour Technol. 2017 Oct;242: 15–27. doi:10.1016/j.biortech.2017.05.010 MedlineSarkarPRoyAPalSMohapatraBKazySKMaitiMKSarPEnrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour Technol. 2017Oct;242: 1527. doi:10.1016/j.biortech.2017.05.010MedlineOpen DOISearch in Google Scholar

Satyam K, Kumar D, Kumar P, Anand R, Kumar A, Roy K. Investigation of oil degrading ability of bacteria isolated from oil. Paripex - Indian J Res. 2018; 7(2):71–73.SatyamKKumarDKumarPAnandRKumarARoyKInvestigation of oil degrading ability of bacteria isolated from oil. Paripex - Indian J Res. 2018; 7(2):7173.Search in Google Scholar

Scigelova M, Crout DHG. Microbial β-N-acetylhexosaminidases and their biotechnological applications. Enzym Microb Technol. 1999 Jul;25(1-2):3–14. doi:10.1016/S0141-0229(98)00171-9ScigelovaMCroutDHGMicrobial β-N-acetylhexosaminidases and their biotechnological applications. Enzym Microb Technol. 1999Jul;25(1-2):314. doi:10.1016/S0141-0229(98)00171-9Open DOISearch in Google Scholar

Sekkal S, Haddam N, Scheers H, Poels KL, Bouhacina L, Nawrot TS, Veulemans HA, Taleb A, Nemery B. Occupational exposure to petroleum products and respiratory health: a cross-sectional study from Algeria. J Occup Environ Med. 2012 Nov; 54(11):1382–1388. doi:10.1097/JOM.0b013e31825fa6c9 MedlineSekkalSHaddamNScheersHPoelsKLBouhacinaLNawrotTSVeulemansHATalebANemeryBOccupational exposure to petroleum products and respiratory health: a cross-sectional study from Algeria. J Occup Environ Med. 2012 Nov; 54(11):13821388. doi:10.1097/JOM.0b013e31825fa6c9Medline23047657Open DOISearch in Google Scholar

Sharma A, Bala K, Husain I. Optimization of arginine deaminase production from indigenous bacterium Pseudomonas aeruginosa PS2. Int J Curr Microbiol Appl Sci. 2017 Nov 20;6(11):3621–3632. doi:10.20546/ijcmas.2017.611.424SharmaABalaKHusainIOptimization of arginine deaminase production from indigenous bacterium Pseudomonas aeruginosa PS2. Int J Curr Microbiol Appl Sci. 2017Nov 20;6(11):36213632. doi:10.20546/ijcmas.2017.611.424Open DOISearch in Google Scholar

Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010 May 01;2(5):a000414. doi:10.1101/cshperspect.a000414 MedlineSilhavyTJKahneDWalkerSThe bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010May 01;2(5):a000414. doi:10.1101/cshperspect.a000414Medline285717720452953Open DOISearch in Google Scholar

Silva TF, Rodrigues DRF, Coutinho GBF, Soares M, Almeida MS, Sarcinelli PN, Mattos RCOC, Larentis AL, Matos GGO. Ototoxicity of hydrocarbons present in gasoline: a literature review. Rev CEFAC. 2018 Feb;20(1):110–122. doi:10.1590/1982-021620182015617SilvaTFRodriguesDRFCoutinhoGBFSoaresMAlmeidaMSSarcinelliPNMattosRCOCLarentisALMatosGGOOtotoxicity of hydrocarbons present in gasoline: a literature review. Rev CEFAC. 2018Feb;20(1):110122. doi:10.1590/1982-021620182015617Open DOISearch in Google Scholar

Singh RS, Chauhan K, Kennedy JF. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications. Int J Biol Macromol. 2017 Mar;96:312–322. doi:10.1016/j.ijbiomac.2016.12.004 MedlineSinghRSChauhanKKennedyJFA panorama of bacterial inulinases: Production, purification, characterization and industrial applications. Int J Biol Macromol. 2017Mar;96:312322. doi:10.1016/j.ijbiomac.2016.12.004Medline27932256Open DOISearch in Google Scholar

Surendra SV, Mahalingam BL, Velan M. Degradation of monoaromatics by Bacillus pumilus MVSV3. Braz Arch Biol Technol. 2017;60(0):60. doi:10.1590/1678-4324-2017160319SurendraSVMahalingamBLVelanMDegradation of monoaromatics by Bacillus pumilus MVSV3. Braz Arch Biol Technol. 2017;60(0):60. doi:10.1590/1678-4324-2017160319Open DOISearch in Google Scholar

Thapa B, Kc AK, Ghimire A. A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu U J Sci Eng Technol. 2012;8:164–170.ThapaBKcAKGhimireAA review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu U J Sci Eng Technol. 2012;8:164170.Search in Google Scholar

Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017 Jan;223:277–286. doi:10.1016/j.biortech.2016.10.037 MedlineVarjaniSJMicrobial degradation of petroleum hydrocarbons. Bioresour Technol. 2017Jan;223:277286. doi:10.1016/j.biortech.2016.10.037Medline27789112Open DOISearch in Google Scholar

Vignesh R, Arularasan A, Gandhiraj V, Deepika RC. Isolation identification and characterization of potential oil degrading bacteria from oil contaminated sites. Int Res J Eng Technol. 2016;3(4): 2503–2508.VigneshRArularasanAGandhirajVDeepikaRCIsolation identification and characterization of potential oil degrading bacteria from oil contaminated sites. Int Res J Eng Technol. 2016;3(4): 25032508.Search in Google Scholar

Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 2018 Dec 3;9:2885. doi:10.3389/fmicb.2018.02885 MedlineXuXLiuWTianSWangWQiQJiangPGaoXLiFLiHYuHPetroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 2018Dec 3;9:2885. doi:10.3389/fmicb.2018.02885Medline628755230559725Open DOISearch in Google Scholar

Xue H, Xiaolin W, Zhaowei H. Mechanism of degradation for petroleum hydrocarbon by Brevibacillus brevis and Bacillus cereus. Acta Petrol Sin. 2006;27:92.XueHXiaolinWZhaoweiHMechanism of degradation for petroleum hydrocarbon by Brevibacillus brevis and Bacillus cereus. Acta Petrol Sin. 2006;27:92.Search in Google Scholar

Yuniati MD. Bioremediation of petroleum-contaminated soil: A review. IOP Conf. Ser.: Earth Environ. Sci. 2018;118:012063. doi:10.1088/1755-1315/118/1/012063YuniatiMDBioremediation of petroleum-contaminated soil: A review. IOP Conf. Ser.: Earth Environ. Sci. 2018;118:012063. doi:10.1088/1755-1315/118/1/012063Open DOISearch in Google Scholar

Zhan Y, Tao X, He S, Song S, Xing J, Li F, Jiang T, Ma L. Isolation, identification and degradation characteristics of oil degrading bacterial strain. OAlib. 2017;04(10):1–12. doi:10.4236/oalib.1104016ZhanYTaoXHeSSongSXingJLiFJiangTMaLIsolation, identification and degradation characteristics of oil degrading bacterial strain. OAlib. 2017;04(10):112. doi:10.4236/oalib.1104016Open DOISearch in Google Scholar

Zhao D, Kumar S, Zhou J, Wang R, Li M, Xiang H. Isolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon. Extremophiles. 2017 Nov;21(6):1081–1090. doi:10.1007/s00792-017-0968-5 MedlineZhaoDKumarSZhouJWangRLiMXiangHIsolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon. Extremophiles. 2017Nov;21(6):10811090. doi:10.1007/s00792-017-0968-5Medline28994006Open DOISearch in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie