1. bookVolumen 28 (2022): Heft 3 (September 2022)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2353-7779
Erstveröffentlichung
30 Mar 2018
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Investigation of defective reinforced concrete beams with obtained damage of compressed area of concrete

Online veröffentlicht: 05 Aug 2022
Volumen & Heft: Volumen 28 (2022) - Heft 3 (September 2022)
Seitenbereich: 225 - 232
Eingereicht: 14 Mar 2022
Akzeptiert: 08 Jun 2022
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2353-7779
Erstveröffentlichung
30 Mar 2018
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

In the building industry, it is a frequent cause of damage to elements at different stages: during transportation, operation, installation, etc. Since replacing an element is not always possible due to various circumstances, it entails significant financial losses, logistics, and others. For this reason, the expediency of studying the effect of damage on the bearing capacity of reinforced concrete elements is growing. This effect is dependent on its type and has significant variability. In the case of the combination of the defect and damage in reinforced concrete elements, the complexity of the research of this element increases significantly. In this article is discussed: a review of damaged reinforced concrete elements; researching the influence of the damage and additional factors on the element; developed testing methodology for bending reinforced concrete elements with damage to concrete in a compressed zone with insufficient reinforcement, when performing damage to the action of the load and during the action of the load, is presented; the influence on the deformability and bearing capacity of the variability of damage on the sample with insufficient reinforcement is reflected, taking into account the factor of change in the load at which the damage is performed; a comparison is made of the dependence of the change in the actual height of the compressed zone on the change in the load on the elements; implementation of conclusions on the result of the study.

Blikharskyi, Y.Z., Maksymenko, O.P., 2021. Evaluation of Strength and Deformability of Thermally Hardened Reinforcement. Materials Science, 56(6), 789-794, DOI: 10.1007/s11003-021-00496-4. DOI öffnenSearch in Google Scholar

Blikharskyy, Y., Kopiika, N., Selejdak, J., 2020. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elementsreliability. Production Engineering Archives, 26(2), 62-72, DOI: 10.30657/pea.2020.26.14. DOI öffnenSearch in Google Scholar

Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearing-capacity of RC beams. Construction of Optimized Energy Potential (CoOPE), 10(1), 145-150, DOI: 10.17512/bozpe.2021.1.15. DOI öffnenSearch in Google Scholar

Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021a. Corrosion Fatigue Damages of Rebars under Loading in Time. Materials, 14(12), 3416, DOI: 10.3390/ma14123416.823560334203076 DOI öffnenSearch in Google Scholar

Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021b. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646, DOI: 10.1016/j.cscm.2021.e00646. DOI öffnenSearch in Google Scholar

Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T., 2018. Fracture toughness of RC beams on the shear, strengthening by FRCM system. 12th International Conference Quality Production Improvement – QPI 2018 MATEC web of conferences, 183, 02009, DOI: 10.1051/matecconf/201818302009. DOI öffnenSearch in Google Scholar

Blikharskyy, Z.; Sobol, K.; Markiv, T.; Selejdak, J., 2021c. Properties of Concretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars. Materials, 14(10), 2638, DOI: 10.3390/ma14102638.815812834070028 DOI öffnenSearch in Google Scholar

Chernieva, O., Plahotny, G., Babič, M., 2021. Methods of reinforcing for engineering restoration of architectural monuments. In: Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering series, (eds) Blikharskyy, Z., 100, Springer, Cham, 87-94, DOI: 10.1007/978-3-030-57340-9_11. DOI öffnenSearch in Google Scholar

Chow, J.K., Liu, K.F., Tan, P.S., Su, Z., Wu, J., Li, Z., Wang, Y.H., 2021. Automated defect inspection of concrete structures. Automation in Construction, 132, 103959, DOI: 10.1016/j.autcon.2021.103959. DOI öffnenSearch in Google Scholar

DBN V.2.6-98: 2009 Minregionstroy of Ukraine, 2009. Constructions of buildings and structures. Concrete and reinforced concrete constructions. Basic design provisions. (National Standard of Ukraine). Search in Google Scholar

Karpiuk, V., Somina, Y., Karpiuk, F., Karpiuk, I., 2021. Peculiar aspects of cracking in prestressed reinforced concrete T-beams. Acta Polytechnica, 61(5), 633-643, DOI: 10.14311/AP.2021.61.0633. DOI öffnenSearch in Google Scholar

Karpyuk, V.M., Kostyuk, A.I., Semina, Y.A., 2018. General Case of Nonlinear Deformation-Strength Model of Reinforced Concrete Structures, Strength of Materials, 50(3), 453-464, DOI: 10.1007/s11223-018-9990-9. DOI öffnenSearch in Google Scholar

Klymenko, E.V., Polianskyi, K.V., 2019. Experimental studies of the stress-strain state of damaged reinforced concrete beams, Bulletin of the Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. DOI: 10.31650/2415-377X-2019-76-24-30. DOI öffnenSearch in Google Scholar

Klymenko, Y., Kos, Z., Grynyova, I., Maksiuta, O., 2020. Operation of Damaged H-Shaped Columns. In: Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering series, (eds) Blikharskyy, Z., 100, Springer, Cham, 192-201. DOI: 10.1007/978-3-030-57340-9_24 DOI öffnenSearch in Google Scholar

Kobayashi, K., Kameda, Y., Itoh, A., Mizuno, E., 2007. An Experimental and Analytical Study on Post-peak Behavior of RC Beam with Internal Defect or Damage, Journal of applied mechanics, DOI: 10.2208/journalam.10.935 DOI öffnenSearch in Google Scholar

Kopiika, N., Selejdak, J., Blikharskyy, Y., 2022. Specifics of physico-mechanical characteristics of thermally-hardened rebar, Production Engineering Archives, 28(1), 73-81, DOI: 10.30657/pea.2022.28.9 DOI öffnenSearch in Google Scholar

Labocha, S., Paluszyński, J., 2021. Selected modeling problems of monopile foundations used in the energy industry, Construction of Optimized Energy Potential (CoOEP), 10(2), DOI: 10.17512/bozpe.2021.2.10. DOI öffnenSearch in Google Scholar

Lacroix, F., Noël, M., Moradi, F., Layssi, H., Tingson, T., 2021. Nondestructive Condition Assessment of Concrete Slabs with Artificial Defects Using Wireless Impact Echo, Journal of Performance of Constructed Facilities, 35(6), 04021072, https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CF.1943-5509.0001651.10.1061/(ASCE)CF.1943-5509.0001651 Search in Google Scholar

Li, X., Xiao, S., Gao, R., Harries, K. A., Wang, Z., Xu, Q., 2021. Effects of grout sleeve defects and their repair on the seismic performance of precast concrete frame structures, Engineering Structures, 242, 112619, DOI: 10.1016/j.engstruct.2021.112619. DOI öffnenSearch in Google Scholar

Lipiński, T., 2021. Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K, Production Engineering Archives, 27(2), 108-111, DOI: 10.30657/pea.2021.27.13. DOI öffnenSearch in Google Scholar

Lobodanov, M., Vegera, P., Khmil, R., Blikharskyy, Z., 2021. Influence of damages in the compressed zone on bearing capacity of reinforced concrete beams. In: Proceedings of EcoComfort 2020. Lecture Notes in Civil Engineering series, (eds) Blikharskyy, Z., 100, Springer, Cham, 260-267, DOI: 10.1007/978-3-030-57340-9_32. DOI öffnenSearch in Google Scholar

Lobodanov, М., Vegera, P., Blikharskyy, Z., 2019. Influence analysis of the main types of defects and damages on bearing capacity in reinforced concrete elements and their research methods. Production Engineering Archives, 22(22), 24-19, DOI: 10.30657/pea.2019.22.05. DOI öffnenSearch in Google Scholar

Macek, W., Branco, R., Szala, M., Marciniak, Z., Ulewicz, R., Sczygiol, N., Kardasz, P., 2020. Profile and Areal Surface Parameters for Fatigue Fracture Characterisation, Materials.; 13(17), 3691, DOI: 10.3390/ma13173691750432832825494 DOI öffnenSearch in Google Scholar

Naotunna, C.N., Samarakoon, S.S.M., Fosså, K.T. 2021. Experimental investigation of crack width variation along the concrete cover depth in reinforced concrete specimens with ribbed bars and smooth bars, Case Studies in Construction Materials, 15, e00593, DOI: 10.1016/j.cscm.2021.e00593. DOI öffnenSearch in Google Scholar

Ohara, Y., Kikuchi, K., Tsuji, T., Mihara, T. 2021. Development of Low-Frequency Phased Array for Imaging Defects in Concrete Structures, Sensors, 21(21), 7012, DOI: 10.3390/s21217012.858786734770316 DOI öffnenSearch in Google Scholar

Özmen, H., Soyluk, K., Anil, Ö. 2021. Analysis of RC structures with different design mistakes under explosive based demolition, Structural Concrete, 22(3), 1462-1486, DOI: 10.1002/suco.201900367. DOI öffnenSearch in Google Scholar

Raczkiewicz, W., Koteš, P., Konečný, P., 2021. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion, Materials, 14(16), 4657, DOI: 10.3390/ma14164657.840068234443178 DOI öffnenSearch in Google Scholar

Radek, N., Pietraszek, J., Bronček, J., Fabian, P., 2020 Properties of Steel Welded with CO2 Laser. In: Current Methods of Construction Design. Lecture Notes in Mechanical Engineering, (eds) Medvecký, Š., Hrček, S., Kohár, R., Brumerčík, F., Konstantová, V., Springer, Cham. DOI: 10.1007/978-3-030-33146-7_65. DOI öffnenSearch in Google Scholar

Semko, O., Gasenko, A., Garkava, O., Danisko, V.Yu., 2018. The influence of the construction of engineering structures on the development of damage to the load-bearing structures of buildings in the surrounding areas. Bridges and tunnels: theory, research, practice, (14), 49-56. DOI: 10.15802/bttrp2019/152875 DOI öffnenSearch in Google Scholar

Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel Y.F., Kovalov M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading, IOP Conference Series: Materials Science and Engineering, 1002(1), 012007, DOI: 10.1088/1757-899X/1002/1/012007. DOI öffnenSearch in Google Scholar

Vegera, P., Vashkevych, R., Blikharskyy, Y., Khmil, R., 2021. Development methodology of determinating residual carrying capacity of reinforced concrete beams with damages tensile reinforcement which occurred during loading, Eastern-European Journal of Enterprise Technologies, 4(7), 112, DOI: 10.15587/1729-4061.2021.237954. DOI öffnenSearch in Google Scholar

Voskobiynyk, O.P., Kitaev, O.O., Makarenko, Y.V., Bugaenko, E.S., 2017. Vynnykov, Y., Voskobiinyk, O., Kharchenko, M., & Marchenko, V., 2017. Probabilistic analysis of deformed mode of engineering constructions’ soil-cement grounds. Transbud-2017 MATEC Web of Conferences 116, 02038, DOI: 10.1051/matecconf/201711602038. DOI öffnenSearch in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo